論文の概要: Neural Image Unfolding: Flattening Sparse Anatomical Structures using Neural Fields
- arxiv url: http://arxiv.org/abs/2411.18415v1
- Date: Wed, 27 Nov 2024 14:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:26:23.031878
- Title: Neural Image Unfolding: Flattening Sparse Anatomical Structures using Neural Fields
- Title(参考訳): ニューラルイメージ展開:ニューラルフィールドを用いたスパース解剖構造平滑化
- Authors: Leonhard Rist, Pluvio Stephan, Noah Maul, Linda Vorberg, Hendrik Ditt, Michael Sühling, Andreas Maier, Bernhard Egger, Oliver Taubmann,
- Abstract要約: トモグラフィーは3次元物体の内部構造を明らかにし、診断に不可欠である。
臓器特異的な展開技術は、密集した3次元表面を歪み最小化された2次元表現にマッピングするために存在する。
我々は、関心の解剖学的変換を2次元概要画像に適合させるために、ニューラルネットワークをデプロイする。
- 参考スコア(独自算出の注目度): 6.5082099033254135
- License:
- Abstract: Tomographic imaging reveals internal structures of 3D objects and is crucial for medical diagnoses. Visualizing the morphology and appearance of non-planar sparse anatomical structures that extend over multiple 2D slices in tomographic volumes is inherently difficult but valuable for decision-making and reporting. Hence, various organ-specific unfolding techniques exist to map their densely sampled 3D surfaces to a distortion-minimized 2D representation. However, there is no versatile framework to flatten complex sparse structures including vascular, duct or bone systems. We deploy a neural field to fit the transformation of the anatomy of interest to a 2D overview image. We further propose distortion regularization strategies and combine geometric with intensity-based loss formulations to also display non-annotated and auxiliary targets. In addition to improved versatility, our unfolding technique outperforms mesh-based baselines for sparse structures w.r.t. peak distortion and our regularization scheme yields smoother transformations compared to Jacobian formulations from neural field-based image registration.
- Abstract(参考訳): トモグラフィーは3次元物体の内部構造を明らかにし、診断に不可欠である。
トモグラフィーボリュームの複数の2次元スライスにまたがる非平面スパース解剖学的構造の形態と外観を可視化することは、本質的には困難であるが、意思決定や報告には有用である。
したがって、密集した3次元表面を歪み最小化された2次元表現にマッピングするために、様々な臓器特異的な展開技術が存在する。
しかし、血管、管、骨などの複雑なスパース構造を平らにする汎用的な枠組みは存在しない。
我々は、関心の解剖学的変換を2次元概要画像に適合させるために、ニューラルネットワークをデプロイする。
さらに、歪み正規化戦略を提案し、幾何と強度に基づく損失定式化を組み合わせ、非注釈および補助的目標を表示する。
汎用性の向上に加えて、我々の展開手法はスパース構造w.r.t.ピーク歪みに対するメッシュベースラインよりも優れており、我々の正規化スキームは、ニューラルネットワークによる画像登録から得られるヤコビの定式化よりもスムーズな変換をもたらす。
関連論文リスト
- Self-Supervised Representation Learning for Nerve Fiber Distribution
Patterns in 3D-PLI [36.136619420474766]
3D-PLI(3D-PLI)は、高分解能の髄質神経線維の微細構造を観察できる顕微鏡イメージング技術である。
3D-PLIにおけるファイバアーキテクチャのオブザーバ非依存的特徴付けのためのベストプラクティスはまだ提供されていない。
自己教師付き表現学習を用いた3次元PLI画像における神経線維構造を特徴付けるための完全データ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2024-01-30T17:49:53Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeITは、同じカテゴリ内で共有される暗黙のテンプレートフィールドを持つ解剖学的構造を表す。
これにより、インスタンス形状とテンプレート形状との対応性の制約を強化することにより、暗黙テンプレートフィールドが有効なテンプレートを生成する。
テンプレートインタラクションモジュールは、有効なテンプレートシェイプとインスタンスワイドの潜在コードとを相互作用することで、目に見えないシェイプを再構築するために導入される。
論文 参考訳(メタデータ) (2023-12-11T07:09:32Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Enforcing connectivity of 3D linear structures using their 2D
projections [54.0598511446694]
本稿では,2次元投影におけるトポロジ認識損失の総和を最小化することにより,結果の3次元接続性を改善することを提案する。
これにより、精度の向上と、アノテーション付きトレーニングデータの提供に必要なアノテーションの労力の削減が図られる。
論文 参考訳(メタデータ) (2022-07-14T11:42:18Z) - IGCN: Image-to-graph Convolutional Network for 2D/3D Deformable
Registration [1.2246649738388387]
単一視点2次元投影画像に対する3次元臓器メッシュの変形可能な登録を実現する画像間畳み込みネットワークを提案する。
複数臓器間の関係を考慮に入れた形状予測は, 臨床的に許容できる精度で放射線像からの呼吸運動と変形を予測するのに有用である。
論文 参考訳(メタデータ) (2021-10-31T12:48:37Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - 3D Structure from 2D Microscopy images using Deep Learning [0.0]
近年の人工知能の進歩は、顕微鏡画像から正確な3D構造を取り出すために応用されている。
本稿では,2次元単一分子局在顕微鏡画像からタンパク質複合体を再構成する深層学習ソリューションを提案する。
論文 参考訳(メタデータ) (2021-10-14T14:55:41Z) - CS2-Net: Deep Learning Segmentation of Curvilinear Structures in Medical
Imaging [90.78899127463445]
カービリニア構造のセグメンテーションのための汎用的で統一的な畳み込みニューラルネットワークを提案する。
エンコーダとデコーダに自己アテンション機構を含む新しいカービリニア構造分割ネットワーク(CS2-Net)を導入する。
論文 参考訳(メタデータ) (2020-10-15T03:06:37Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - Dynamic Reconstruction of Deformable Soft-tissue with Stereo Scope in
Minimal Invasive Surgery [24.411005883017832]
最小侵襲手術では, 最新の軟組織表面の変形形状を再構築し, 可視化することが重要である。
本稿では、変形可能な表面の高密度再構成のための革新的同時局所化マッピング(SLAM)アルゴリズムを提案する。
公開データセットを用いたインビビオ実験では、3Dモデルがさまざまなソフトタスクに対してインクリメンタルに構築可能であることが示されている。
論文 参考訳(メタデータ) (2020-03-22T16:50:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。