論文の概要: CrossSDF: 3D Reconstruction of Thin Structures From Cross-Sections
- arxiv url: http://arxiv.org/abs/2412.04120v3
- Date: Mon, 24 Mar 2025 23:03:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 20:14:12.577813
- Title: CrossSDF: 3D Reconstruction of Thin Structures From Cross-Sections
- Title(参考訳): CrossSDF: 断面からの薄膜の3次元再構成
- Authors: Thomas Walker, Salvatore Esposito, Daniel Rebain, Amir Vaxman, Arno Onken, Changjian Li, Oisin Mac Aodha,
- Abstract要約: CrossSDFは平面輪郭から発生する2次元符号付き距離から3次元符号付き距離場を抽出する新しい手法である。
提案手法は, 従来の手法よりも大幅に改善され, 薄型構造を効果的に再構築し, 正確な3次元モデルを生成する。
- 参考スコア(独自算出の注目度): 23.35977941611922
- License:
- Abstract: Reconstructing complex structures from planar cross-sections is a challenging problem, with wide-reaching applications in medical imaging, manufacturing, and topography. Out-of-the-box point cloud reconstruction methods can often fail due to the data sparsity between slicing planes, while current bespoke methods struggle to reconstruct thin geometric structures and preserve topological continuity. This is important for medical applications where thin vessel structures are present in CT and MRI scans. This paper introduces CrossSDF, a novel approach for extracting a 3D signed distance field from 2D signed distances generated from planar contours. Our approach makes the training of neural SDFs contour-aware by using losses designed for the case where geometry is known within 2D slices. Our results demonstrate a significant improvement over existing methods, effectively reconstructing thin structures and producing accurate 3D models without the interpolation artifacts or over-smoothing of prior approaches.
- Abstract(参考訳): 平面断面から複雑な構造を再構築することは難しい問題であり、医療画像、製造、地形学に広く応用されている。
アウト・オブ・ザ・ボックス(out-of-the-box)ポイントのクラウド再構成手法は、スライス面間のデータ間隔のためにしばしば失敗するが、現在のベッスモーク法は、薄い幾何学的構造を再構築し、位相的連続性を維持するのに苦労する。
これは、CTやMRIスキャンに細い血管構造が存在する医療応用において重要である。
本稿では,平面輪郭から発生する2次元符号距離から3次元符号距離場を抽出する手法であるCrossSDFを紹介する。
提案手法は,2次元スライス内で幾何が知られている場合の損失を利用して,ニューラルSDFの輪郭認識を訓練する。
提案手法は, 従来の手法よりも大幅に改善され, 薄型構造を効果的に再構築し, 補間アーティファクトや先行手法の過平滑化を伴わずに正確な3次元モデルを生成する。
関連論文リスト
- Neural Image Unfolding: Flattening Sparse Anatomical Structures using Neural Fields [6.5082099033254135]
トモグラフィーは3次元物体の内部構造を明らかにし、診断に不可欠である。
臓器特異的な展開技術は、密集した3次元表面を歪み最小化された2次元表現にマッピングするために存在する。
我々は、関心の解剖学的変換を2次元概要画像に適合させるために、ニューラルネットワークをデプロイする。
論文 参考訳(メタデータ) (2024-11-27T14:58:49Z) - DuoLift-GAN:Reconstructing CT from Single-view and Biplanar X-Rays with Generative Adversarial Networks [1.3812010983144802]
本稿では,DuoLift Generative Adversarial Networks (DuoLift-GAN)を紹介する。
これらの3D出力は統合された3D特徴マップにマージされ、完全な3D胸部ボリュームにデコードされ、よりリッチな3D情報キャプチャを可能にする。
論文 参考訳(メタデータ) (2024-11-12T17:11:18Z) - EAR: Edge-Aware Reconstruction of 3-D vertebrae structures from bi-planar X-ray images [19.902946440205966]
本稿では,新しいエッジ・アウェア・コンストラクション・ネットワーク(EAR)を提案する。
自動エンコーダアーキテクチャをバックボーンとして,エッジアテンションモジュールと周波数拡張モジュールを提案する。
提案手法は3つの公開データセットを用いて評価し、4つの最先端モデルと比較した。
論文 参考訳(メタデータ) (2024-07-30T16:19:14Z) - C^2RV: Cross-Regional and Cross-View Learning for Sparse-View CBCT Reconstruction [17.54830070112685]
コーンビームCT(CBCT)は医療現場で広く用いられている画像技術である。
コーン状X線による測定により, CBCTの復元が困難になる。
本稿では,3次元空間におけるクロスリージョン学習を実現するために,明示的なマルチスケールボリューム表現を活用してC2RVを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:37:56Z) - Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
本稿では,3次元ボリューム再構成のための2次半順序スコアベースモデル(TOSM)を提案する。
トレーニング期間中、TOSMは2次元空間のデータ分布を学習し、トレーニングの複雑さを低減する。
再構成フェーズでは、TOSMは3方向の相補的なスコアを利用して、3次元空間のデータ分布を更新する。
論文 参考訳(メタデータ) (2023-08-16T17:07:40Z) - Enforcing 3D Topological Constraints in Composite Objects via Implicit Functions [60.56741715207466]
医学的応用は心臓や脊椎などの複数の部分を持つ複雑な臓器の正確な3D表現を必要とすることが多い。
本稿では,深い暗黙的符号付き距離関数を用いた3次元物体再構成におけるトポロジ的制約を強制する新しい手法を提案する。
そこで本研究では,3次元形状間のトポロジ的制約を効果的に検証・実施するサンプリングベース手法を提案する。
論文 参考訳(メタデータ) (2023-07-16T10:07:15Z) - gSDF: Geometry-Driven Signed Distance Functions for 3D Hand-Object
Reconstruction [94.46581592405066]
我々は手の構造を利用してSDFによる形状復元の指導を行う。
我々は、ポーズ変換のキネマティック連鎖を予測し、SDFを高調波ハンドポーズと整列させる。
論文 参考訳(メタデータ) (2023-04-24T10:05:48Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) は臨床画像撮影において重要な役割を担っている。
従来の方法では、高品質な3D CBCT画像の再構成には数百の2次元X線投影が必要である。
これにより、放射線線量を減らすため、スパースビューCBCT再構成への関心が高まっている。
本稿では,この問題を解決するために,新しい幾何対応エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Enforcing connectivity of 3D linear structures using their 2D
projections [54.0598511446694]
本稿では,2次元投影におけるトポロジ認識損失の総和を最小化することにより,結果の3次元接続性を改善することを提案する。
これにより、精度の向上と、アノテーション付きトレーニングデータの提供に必要なアノテーションの労力の削減が図られる。
論文 参考訳(メタデータ) (2022-07-14T11:42:18Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
本稿では,立体対における曲線構造の検出とマッチングのための完全自動パイプラインを提案する。
主に、TEM画像のステレオ対から転位を3次元再構成することに焦点を当てる。
論文 参考訳(メタデータ) (2021-10-14T23:05:47Z) - Vid2Curve: Simultaneous Camera Motion Estimation and Thin Structure
Reconstruction from an RGB Video [90.93141123721713]
ワイヤーフレーム彫刻、フェンス、ケーブル、電力線、木の枝などの細い構造は現実世界では一般的である。
従来の画像ベースや深度ベースの再構築手法を用いて3Dデジタルモデルを入手することは極めて困難である。
ハンドヘルドカメラで撮影したカラービデオから,カメラの動きを同時に推定し,複雑な3次元薄膜構造の形状を高品質に再構成する手法を提案する。
論文 参考訳(メタデータ) (2020-05-07T10:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。