Learning the Evolution of Physical Structure of Galaxies via Diffusion Models
- URL: http://arxiv.org/abs/2411.18440v1
- Date: Wed, 27 Nov 2024 15:28:30 GMT
- Title: Learning the Evolution of Physical Structure of Galaxies via Diffusion Models
- Authors: Andrew Lizarraga, Eric Hanchen Jiang, Jacob Nowack, Yun Qi Li, Ying Nian Wu, Bernie Boscoe, Tuan Do,
- Abstract summary: This paper introduces a novel approach to conditioning Denoising Diffusion Probabilistic Models (DDPM) on redshifts for generating galaxy images.
We explore whether this advanced generative model can accurately capture the physical characteristics of galaxies based solely on their images and redshift measurements.
- Score: 29.01313417459577
- License:
- Abstract: In astrophysics, understanding the evolution of galaxies in primarily through imaging data is fundamental to comprehending the formation of the Universe. This paper introduces a novel approach to conditioning Denoising Diffusion Probabilistic Models (DDPM) on redshifts for generating galaxy images. We explore whether this advanced generative model can accurately capture the physical characteristics of galaxies based solely on their images and redshift measurements. Our findings demonstrate that this model not only produces visually realistic galaxy images but also encodes the underlying changes in physical properties with redshift that are the result of galaxy evolution. This approach marks a significant advancement in using generative models to enhance our scientific insight into cosmic phenomena.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Using Galaxy Evolution as Source of Physics-Based Ground Truth for Generative Models [0.9701233658865522]
We build a conditional denoising diffusionaxy probabilistic model (DDPM) and a conditional variational autoencoder (CVAE)
This is one of the first studies to probe these generative models using physically motivated metrics.
We find that both models produce comparable realistic galaxies based on human evaluation, but our physics-based metrics are better able to discern the strengths and weaknesses of the generative models.
arXiv Detail & Related papers (2024-07-09T21:01:08Z) - Galaxy Classification: A machine learning approach for classifying
shapes using numerical data [0.0]
We present a machine learning model for galaxy classification using numerical data from the Galaxy Zoo project.
Our results show that our model achieves high accuracy in classifying galaxies and has the potential to significantly enhance our understanding of the formation and evolution of galaxies.
arXiv Detail & Related papers (2023-11-30T20:47:16Z) - Towards solving model bias in cosmic shear forward modeling [2.967246997200238]
Weak gravitational lensing generates a slight shearing of galaxy morphologies called cosmic shear.
Modern techniques of shear estimation based on statistics of ellipticity measurements suffer from the fact that the ellipticity is not a well-defined quantity for arbitrary galaxy light profiles.
We show that a hybrid physical and deep learning Hierarchical Bayesian Model, where a generative model captures the galaxy morphology, enables us to recover an unbiased estimate of the shear on realistic galaxies.
arXiv Detail & Related papers (2022-10-28T16:23:49Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Realistic galaxy image simulation via score-based generative models [0.0]
We show that a score-based generative model can be used to produce realistic yet fake images that mimic observations of galaxies.
Subjectively, the generated galaxies are highly realistic when compared with samples from the real dataset.
arXiv Detail & Related papers (2021-11-02T16:27:08Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - Predicting galaxy spectra from images with hybrid convolutional neural
networks [0.0]
We present a powerful new approach using a hybrid convolutional neural network with deconvolution instead of batch normalization.
The learned mapping between galaxy imaging and spectra will be transformative for future wide-field surveys.
arXiv Detail & Related papers (2020-09-25T16:16:16Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.