論文の概要: A comparison of extended object tracking with multi-modal sensors in indoor environment
- arxiv url: http://arxiv.org/abs/2411.18476v1
- Date: Wed, 27 Nov 2024 16:16:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:25:28.460455
- Title: A comparison of extended object tracking with multi-modal sensors in indoor environment
- Title(参考訳): 屋内環境における拡張物体追跡とマルチモーダルセンサの比較
- Authors: Jiangtao Shuai, Martin Baerveldt, Manh Nguyen-Duc, Anh Le-Tuan, Manfred Hauswirth, Danh Le-Phuoc,
- Abstract要約: 本稿では、LiDARとカメラの2つの異なる3Dポイント・クラウド・センサ・ソースを比較し、効率的な物体追跡手法の予備的提案を行う。
我々はまず,10点と対象環境に関する事前情報を利用する高速物体検出器を開発した。
- 参考スコア(独自算出の注目度): 1.4623784198777086
- License:
- Abstract: This paper presents a preliminary study of an efficient object tracking approach, comparing the performance of two different 3D point cloud sensory sources: LiDAR and stereo cameras, which have significant price differences. In this preliminary work, we focus on single object tracking. We first developed a fast heuristic object detector that utilizes prior information about the environment and target. The resulting target points are subsequently fed into an extended object tracking framework, where the target shape is parameterized using a star-convex hypersurface model. Experimental results show that our object tracking method using a stereo camera achieves performance similar to that of a LiDAR sensor, with a cost difference of more than tenfold.
- Abstract(参考訳): 本稿では,2つの異なる3Dポイントクラウドセンサ(LiDARとステレオカメラ)の性能を比較した,効率的な物体追跡手法の予備的検討を行った。
この予備的な作業では、単一オブジェクト追跡に焦点を当てる。
我々はまず,環境や目標に関する事前情報を利用する高速ヒューリスティック物体検出器を開発した。
得られたターゲットポイントは拡張されたオブジェクト追跡フレームワークに入力され、ターゲットの形状は星-凸超曲面モデルを用いてパラメータ化される。
実験の結果,ステレオカメラを用いた物体追跡法は,LiDARセンサと同じような性能を示し,コスト差は10倍以上であった。
関連論文リスト
- SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics [0.7373617024876725]
自律運転では、3Dオブジェクト検出は、経路計画や動き推定を含む下流タスクに対してより正確な情報を提供する。
本稿では,既存のLiDARのみに基づく3Dオブジェクト検出における意味情報の強化を目的としたSeSameを提案する。
KITTIオブジェクト検出ベンチマークにおいて,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-03-11T08:17:56Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
本稿では,高性能なオフラインLiDARによる3Dオブジェクト検出を実現することを目的とする。
まず、経験豊富な人間のアノテータが、トラック中心の視点でオブジェクトに注釈を付けるのを観察する。
従来のオブジェクト中心の視点ではなく,トラック中心の視点で高性能なオフライン検出器を提案する。
論文 参考訳(メタデータ) (2023-04-24T17:59:05Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3Dオブジェクトトラッキングは、自律運転など、多くのアプリケーションにおいて重要な役割を果たす。
CXTrackは3次元オブジェクト追跡のためのトランスフォーマーベースのネットワークである。
CXTrackは29FPSで動作しながら最先端のトラッキング性能を実現する。
論文 参考訳(メタデータ) (2022-11-12T11:29:01Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3Dオブジェクトトラッキングは、自動運転システムにおいて重要なタスクである。
本稿では,3次元物体追跡における3重項埋め込みと動作表現の併用について検討する。
論文 参考訳(メタデータ) (2022-10-28T15:23:50Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - e-TLD: Event-based Framework for Dynamic Object Tracking [23.026432675020683]
本稿では,一般的な追跡条件下での移動イベントカメラを用いた長期オブジェクト追跡フレームワークを提案する。
このフレームワークは、オンライン学習を伴うオブジェクトの識別表現を使用し、ビューのフィールドに戻るとオブジェクトを検出し、追跡する。
論文 参考訳(メタデータ) (2020-09-02T07:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。