Dynamic Logistic Ensembles with Recursive Probability and Automatic Subset Splitting for Enhanced Binary Classification
- URL: http://arxiv.org/abs/2411.18649v1
- Date: Wed, 27 Nov 2024 00:22:55 GMT
- Title: Dynamic Logistic Ensembles with Recursive Probability and Automatic Subset Splitting for Enhanced Binary Classification
- Authors: Mohammad Zubair Khan, David Li,
- Abstract summary: This paper presents a novel approach to binary classification using dynamic logistic ensemble models.
We develop an algorithm that automatically partitions the dataset into multiple subsets, constructing an ensemble of logistic models to enhance classification accuracy.
This work balances computational efficiency with theoretical rigor, providing a robust and interpretable solution for complex classification tasks.
- Score: 2.7396014165932923
- License:
- Abstract: This paper presents a novel approach to binary classification using dynamic logistic ensemble models. The proposed method addresses the challenges posed by datasets containing inherent internal clusters that lack explicit feature-based separations. By extending traditional logistic regression, we develop an algorithm that automatically partitions the dataset into multiple subsets, constructing an ensemble of logistic models to enhance classification accuracy. A key innovation in this work is the recursive probability calculation, derived through algebraic manipulation and mathematical induction, which enables scalable and efficient model construction. Compared to traditional ensemble methods such as Bagging and Boosting, our approach maintains interpretability while offering competitive performance. Furthermore, we systematically employ maximum likelihood and cost functions to facilitate the analytical derivation of recursive gradients as functions of ensemble depth. The effectiveness of the proposed approach is validated on a custom dataset created by introducing noise and shifting data to simulate group structures, resulting in significant performance improvements with layers. Implemented in Python, this work balances computational efficiency with theoretical rigor, providing a robust and interpretable solution for complex classification tasks with broad implications for machine learning applications. Code at https://github.com/ensemble-art/Dynamic-Logistic-Ensembles
Related papers
- Structural Entropy Guided Probabilistic Coding [52.01765333755793]
We propose a novel structural entropy-guided probabilistic coding model, named SEPC.
We incorporate the relationship between latent variables into the optimization by proposing a structural entropy regularization loss.
Experimental results across 12 natural language understanding tasks, including both classification and regression tasks, demonstrate the superior performance of SEPC.
arXiv Detail & Related papers (2024-12-12T00:37:53Z) - Operator Learning Using Random Features: A Tool for Scientific Computing [3.745868534225104]
Supervised operator learning centers on the use of training data to estimate maps between infinite-dimensional spaces.
This paper introduces the function-valued random features method.
It leads to a supervised operator learning architecture that is practical for nonlinear problems.
arXiv Detail & Related papers (2024-08-12T23:10:39Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
Dynamics [20.953728061894044]
Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow rapidly and tasks become more complex.
We consider a probabilistic hierarchical modeling paradigm that combines the benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization.
We derive two efficient variational inference techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models.
arXiv Detail & Related papers (2022-11-02T13:54:07Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse
Additive Models with Feature Division and Decorrelation [16.232378903482143]
We propose a new distributed statistical learning algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model.
The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data.
Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains.
arXiv Detail & Related papers (2022-05-16T18:31:03Z) - Adaptive Sampling for Minimax Fair Classification [40.936345085421955]
We propose an adaptive sampling algorithm based on the principle of optimism, and derive theoretical bounds on its performance.
By deriving algorithm independent lower-bounds for a specific class of problems, we show that the performance achieved by our adaptive scheme cannot be improved in general.
arXiv Detail & Related papers (2021-03-01T04:58:27Z) - Relative gradient optimization of the Jacobian term in unsupervised deep
learning [9.385902422987677]
Learning expressive probabilistic models correctly describing the data is a ubiquitous problem in machine learning.
Deep density models have been widely used for this task, but their maximum likelihood based training requires estimating the log-determinant of the Jacobian.
We propose a new approach for exact training of such neural networks.
arXiv Detail & Related papers (2020-06-26T16:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.