Generating non-Clifford gate operations through exact mapping between Majorana fermions and $\mathbb{Z}_4$ parafermions
- URL: http://arxiv.org/abs/2411.18736v2
- Date: Mon, 02 Dec 2024 03:40:38 GMT
- Title: Generating non-Clifford gate operations through exact mapping between Majorana fermions and $\mathbb{Z}_4$ parafermions
- Authors: Ali Hamed Safwan, Raditya Weda Bomantara,
- Abstract summary: This paper establishes an exact mapping between Majorana fermions to $mathbbZ_4$ parafermions in systems under total parity non-conserving and total parity conserving setting.
It is revealed that braiding of Majorana fermions may lead to non-Clifford quantum gates in the 4-dimensional qudit representation spanned by $mathbbZ_4$ parafermions.
- Score: 0.0
- License:
- Abstract: Majorana fermions and their generalizations to $\mathbb{Z}_n$ parafermions are considered promising building blocks of fault-tolerant quantum computers for their ability to encode quantum information nonlocally. In such topological quantum computers, highly robust quantum gates are obtained by braiding pairs of these quasi-particles. However, it is well-known that braiding Majorana fermions or parafermions only leads to a Clifford gate, hindering quantum universality. This paper establishes an exact mapping between Majorana fermions to $\mathbb{Z}_4$ parafermions in systems under total parity non-conserving and total parity conserving setting. It is revealed that braiding of Majorana fermions may lead to non-Clifford quantum gates in the 4-dimensional qudit representation spanned by $\mathbb{Z}_4$ parafermions, whilst braiding of $\mathbb{Z}_4$ parafermions may similarly yield non-Clifford quantum gates in the qubit representation spanned by Majorana fermions. This finding suggests that topologically protected universal quantum computing may be possible with Majorana fermions ($\mathbb{Z}_4$ parafermions) by supplementing the usual braiding operations with the braiding of $\mathbb{Z}_4$ parafermions (Majorana fermions) that could be formed out of Majorana fermions ($\mathbb{Z}_4$ parafermions) via the mapping prescribed here. Finally, the paper discusses how braiding of Majorana fermions or $\mathbb{Z}_4$ parafermions could be obtained via a series of parity measurements.
Related papers
- Characterizing maximally many-body entangled fermionic states by using $M$-body density matrix [0.0]
We study the many-body entanglement structure of fermionic $N-particle states.
We also explore fermionic many-body entanglement in random states.
arXiv Detail & Related papers (2024-12-12T18:53:28Z) - Fermion-qubit fault-tolerant quantum computing [39.58317527488534]
We introduce fermion-qubit fault-tolerant quantum computing, a framework which removes this overhead altogether.
We show how our framework can be implemented in neutral atoms, overcoming the apparent inability of neutral atoms to implement non-number-conserving gates.
Our framework opens the door to fermion-qubit fault-tolerant quantum computation in platforms with native fermions.
arXiv Detail & Related papers (2024-11-13T19:00:02Z) - Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Fermionic Hamiltonians without trivial low-energy states [12.961180148172197]
We construct local fermionic Hamiltonians with no low-energy trivial states (NLTS)
Distinctly from the qubit case, we define trivial states via finite-depth $textitfermionic$ quantum circuits.
We define a fermionic analogue of the class quantum PCP and discuss its relation with the qubit version.
arXiv Detail & Related papers (2023-07-25T18:00:02Z) - Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - Systematic construction of topological-nontopological hybrid universal
quantum gates based on many-body Majorana fermion interactions [0.0]
Topological quantum computation by way of braiding of Majorana fermions is not universal quantum computation.
We make a systematic construction of the C$n$Z gate, C$n$NOT gate and the C$n$SWAP gate.
arXiv Detail & Related papers (2023-04-13T04:41:29Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Anomalous Quantum Information Scrambling for $\mathbb{Z}_3$ Parafermion
Chains [0.0]
Parafermions are exotic quasiparticles with non-Abelian fractional statistics.
We study the scrambling of quantum information in one-dimensional parafermionic chains.
arXiv Detail & Related papers (2021-03-24T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.