Symbolic Hamiltonian Compiler for Hybrid Qubit-Boson Processors
- URL: http://arxiv.org/abs/2506.00215v1
- Date: Fri, 30 May 2025 20:41:50 GMT
- Title: Symbolic Hamiltonian Compiler for Hybrid Qubit-Boson Processors
- Authors: Ethan Decker, Erik Gustafson, Evan McKinney, Alex K. Jones, Lucas Goetz, Ang Li, Alexander Schuckert, Samuel Stein, Gushu Li, Eleanor Crane,
- Abstract summary: We introduce a novel symbolic compiler based on matrix-free symbolic manipulation of second quantised Hamiltonians.<n>This automates the decomposition of fermion-boson second quantized problems into qubit-boson instruction set architectures.<n>This integration establishes a comprehensive pipeline for simulating quantum systems on emerging qubit-boson and fermion-boson hardware.
- Score: 39.86099518400446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum simulation of the interactions of fermions and bosons -- the fundamental particles of nature -- is essential for modeling complex quantum systems in material science, chemistry and high-energy physics and has been proposed as a promising application of fermion-boson quantum computers, which overcome the overhead encountered in mapping fermions and bosons to qubits. However, compiling the simulation of specific fermion-boson Hamiltonians into the natively available fermion-boson gate set is challenging. In particular, the large local dimension of bosons renders matrix-based compilation methods, as used for qubits and in existing tools such as Bosonic Qiskit or OpenFermion, challenging. We overcome this issue by introducing a novel symbolic compiler based on matrix-free symbolic manipulation of second quantised Hamiltonians, which automates the decomposition of fermion-boson second quantized problems into qubit-boson instruction set architectures. This integration establishes a comprehensive pipeline for simulating quantum systems on emerging qubit-boson and fermion-boson hardware, paving the way for their large-scale usage.
Related papers
- Probing topological matter and fermion dynamics on a neutral-atom quantum computer [27.84599956781646]
We realize a digital quantum simulation architecture for two-dimensional fermionic systems based on reconfigurable atom arrays.<n>Results pave the way for digital quantum simulations of complex fermionic systems for materials science, chemistry, and high-energy physics.
arXiv Detail & Related papers (2025-01-30T18:32:23Z) - Fault-tolerant fermionic quantum computing [39.58317527488534]
We introduce fermionic fault-tolerant quantum computing, a framework which removes this overhead altogether.<n>We show how our framework can be implemented in neutral atoms, overcoming the apparent inability of neutral atoms to implement non-number-conserving gates.
arXiv Detail & Related papers (2024-11-13T19:00:02Z) - A recipe for local simulation of strongly-correlated fermionic matter on quantum computers: the 2D Fermi-Hubbard model [0.0]
We provide a step-by-step recipe for simulating the paradigmatic two-dimensional Fermi-Hubbard model on a quantum computer using only local operations.
We provide a detailed recipe for an end-to-end simulation including embedding on a physical device.
arXiv Detail & Related papers (2024-08-26T18:00:07Z) - Quantum Simulation of Boson-Related Hamiltonians: Techniques, Effective Hamiltonian Construction, and Error Analysis [4.533969990771866]
This tutorial review focuses on encoding and simulating certain bosonic-related model Hamiltonians.<n>We discuss recently developed quantum algorithms for these interacting models and the construction of effective Hamiltonians.
arXiv Detail & Related papers (2023-07-13T06:46:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Fermionic quantum processing with programmable neutral atom arrays [0.539215791790606]
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.
We present a fermionic quantum processor, where fermionic models are encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates.
arXiv Detail & Related papers (2023-03-13T10:35:48Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.