論文の概要: MATATA: a weak-supervised MAthematical Tool-Assisted reasoning for Tabular Applications
- arxiv url: http://arxiv.org/abs/2411.18915v2
- Date: Mon, 02 Dec 2024 21:08:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 12:22:35.588303
- Title: MATATA: a weak-supervised MAthematical Tool-Assisted reasoning for Tabular Applications
- Title(参考訳): 弱教師付き数学ツールMatata : タブラル応用のための推論
- Authors: Vishnou Vinayagame, Gregory Senay, Luis Martí,
- Abstract要約: MATATAは、推論、計画、ツール使用を通じてデータ問題に対してLLMエージェントを訓練するコスト効率のよい方法である。
3.8B/8B SLM(Small Language Models)は、特にローカルホスティングとセンシティブなビジネスコンテキストに向いている。
実験により、MATATAはオープンソースモデルに基づく推論フレームワークのうち、FinQAとTAT-QAで最先端のパフォーマンスに達することが示された。
- 参考スコア(独自算出の注目度): 0.9831489366502302
- License:
- Abstract: Mathematical reasoning capabilities are increasing with tool-augmented language agents, but methods often rely either on closed-source or large models, external data, or extensive prompt engineering. This work introduces MATATA, a novel cost-effective method to train LLM agents for tabular data problems through reasoning, planning, and tool use. With a progressive self-improvement paradigm and an iterative weak supervision, it empowers 3.8B/8B Small Language Models (SLMs), particularly suited for local hosting and sensitive business contexts where data privacy is crucial. By employing a flexible and reusable tools across different datasets, it achieves robust performance with effective scalability across shared tasks. Experiments show that MATATA reaches state-of-the-art performances on FinQA and TAT-QA among reasoning frameworks based on open-source models. Moreover, MATATA models compete with GPT-4 based frameworks on TabMWP, while being SLMs.
- Abstract(参考訳): ツール拡張された言語エージェントによって数学的推論能力は増大しているが、メソッドはクローズドソースまたは大規模モデル、外部データ、あるいは広範なプロンプトエンジニアリングに依存することが多い。
本研究は,LCMエージェントを推論,計画,ツール使用を通じて表型データ問題に対して訓練する,新たなコスト効率の手法であるMATATAを紹介する。
プログレッシブな自己改善パラダイムと反復的な弱い監督によって、3.8B/8B小言語モデル(SLM)が強化され、特にデータプライバシが不可欠であるローカルホスティングと機密性の高いビジネスコンテキストに適している。
さまざまなデータセットに対してフレキシブルで再利用可能なツールを使用することで、共有タスク間で効果的なスケーラビリティを備えた堅牢なパフォーマンスを実現する。
実験により、MATATAはオープンソースモデルに基づく推論フレームワークのうち、FinQAとTAT-QAで最先端のパフォーマンスに達することが示された。
さらに、MATATAモデルはTabMWP上のGPT-4ベースのフレームワークと競合し、SLMである。
関連論文リスト
- Benchmarking Large Language Models for Math Reasoning Tasks [12.91916443702145]
我々は、4つの強力な基礎モデル上の5つの広く使われている数学的データセットの数学的問題解決のための、最先端の文脈内学習アルゴリズムを7つ比較した。
以上の結果から, GPT-4o や LLaMA 3-70B のような大規模基盤モデルでは, 具体的なプロンプト戦略とは独立に数学的推論を解くことが可能であることが示唆された。
将来の研究で追加モデルの統合をサポートするために、ベンチマークコードをオープンソースにしています。
論文 参考訳(メタデータ) (2024-08-20T13:34:17Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
知識グラフ(KG)から得られた計画データを用いて,大規模言語モデル(LLM)計画能力を向上するための新しいフレームワークを提案する。
KGデータで微調整されたLLMは、計画能力を向上し、検索を含む複雑なQAタスクを処理するのがより適している。
論文 参考訳(メタデータ) (2024-06-20T13:07:38Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
本稿では,機能エンジニアとして大規模言語モデルを用いる新しい文脈内学習フレームワークFeatLLMを提案する。
FeatLLMは高品質なルールを生成し、TabLLMやSTUNTなどよりも大幅に(平均で10%)優れている。
論文 参考訳(メタデータ) (2024-04-15T06:26:08Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
意思決定・汎用ツール・ユース・フレームワーク(DEER)を提案する。
具体的には、まず、自動生成パイプラインを介して、複数の決定ブランチを持つツール使用サンプルを構築します。
提案するDEERは, 各種データセットのベースラインよりも効果的で, 著しく優れる。
論文 参考訳(メタデータ) (2024-02-26T16:11:03Z) - Equipping Language Models with Tool Use Capability for Tabular Data
Analysis in Finance [10.859392781606623]
大規模言語モデル(LLM)は、様々な推論能力を示しているが、エラーの伝播や幻覚といった課題に直面している。
これらの制限を緩和する外部ツールによる言語モデル拡張の可能性を探る。
教師付き微調整をLLaMA-2 13B Chatモデルに適用し,「タスクルータ」と「タスクソルバ」の両方として機能させる。
論文 参考訳(メタデータ) (2024-01-27T07:08:37Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - CREATOR: Tool Creation for Disentangling Abstract and Concrete Reasoning of Large Language Models [74.22729793816451]
大規模言語モデル(LLM)はツールの利用において大きな進歩を遂げているが、その能力はAPIの可用性によって制限されている。
我々は、LCMがドキュメンテーションとコード実現を使って独自のツールを作成できる新しいフレームワークCREATORを提案する。
我々は,MATH と TabMWP のベンチマークで CREATOR を評価する。
論文 参考訳(メタデータ) (2023-05-23T17:51:52Z) - TALM: Tool Augmented Language Models [28.483609366116525]
トランスフォーマーベース言語モデル(LM)は、様々なタスクにまたがるスケールによるパフォーマンス向上を示す。
本稿では,ツール拡張言語モデル(Tool Augmented Language Models,TALM)を提案する。
TALMは知識量の多いQAタスクと単純なツールによる推論指向の数学タスクの両方に強い性能を示す。
論文 参考訳(メタデータ) (2022-05-24T17:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。