論文の概要: EzSQL: An SQL intermediate representation for improving SQL-to-text Generation
- arxiv url: http://arxiv.org/abs/2411.18923v1
- Date: Thu, 28 Nov 2024 05:24:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:22:32.625689
- Title: EzSQL: An SQL intermediate representation for improving SQL-to-text Generation
- Title(参考訳): EzSQL: SQL-to-text生成を改善するSQL中間表現
- Authors: Meher Bhardwaj, Hrishikesh Ethari, Dennis Singh Moirangthem,
- Abstract要約: 我々は、自然言語のテキストシーケンスと整合するEzと呼ばれる新しいモデルを開発した。
Ezは演算子とキーワードを変更することで、クエリを自然言語テキストに近づける。
ウィキやスパイダーのデータセットのクエリからテキスト記述を生成する手法として,本モデルが有効であることを示す。
- 参考スコア(独自算出の注目度): 1.6385815610837167
- License:
- Abstract: The SQL-to-text generation task traditionally uses template base, Seq2Seq, tree-to-sequence, and graph-to-sequence models. Recent models take advantage of pre-trained generative language models for this task in the Seq2Seq framework. However, treating SQL as a sequence of inputs to the pre-trained models is not optimal. In this work, we put forward a new SQL intermediate representation called EzSQL to align SQL with the natural language text sequence. EzSQL simplifies the SQL queries and brings them closer to natural language text by modifying operators and keywords, which can usually be described in natural language. EzSQL also removes the need for set operators. Our proposed SQL-to-text generation model uses EzSQL as the input to a pre-trained generative language model for generating the text descriptions. We demonstrate that our model is an effective state-of-the-art method to generate text narrations from SQL queries on the WikiSQL and Spider datasets. We also show that by generating pretraining data using our SQL-to-text generation model, we can enhance the performance of Text-to-SQL parsers.
- Abstract(参考訳): SQL-to-text生成タスクは、伝統的にテンプレートベース、Seq2Seq、tree-to-sequence、Graph-to-sequenceモデルを使用する。
最近のモデルは、Seq2Seqフレームワークにおいて、このタスクのために事前訓練された生成言語モデルを利用する。
しかし、事前訓練されたモデルに対する入力のシーケンスとしてSQLを扱うのが最適ではない。
本研究では、EzSQLと呼ばれる新しいSQL中間表現を提案し、SQLを自然言語のテキストシーケンスと整合させる。
EzSQLはSQLクエリを単純化し、演算子とキーワードを変更することで自然言語テキストに近づく。
EzSQLはまた、セット演算子の必要性を取り除く。
提案するSQL-to-text生成モデルは,テキスト記述を生成するための事前学習された生成言語モデルの入力としてEzSQLを使用する。
ウィキSQLおよびスパイダーデータセット上のSQLクエリからテキストナレーションを生成する手法として,本モデルが有効であることを示す。
また、SQL-to-text生成モデルを用いて事前学習データを生成することにより、テキスト-to-SQLパーサの性能を向上させることができることを示す。
関連論文リスト
- SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation [16.07396492960869]
本稿では,テキストからテキストへの変換処理に特化して設計されたトランスフォーマーアーキテクチャを提案する。
我々のモデルは、実行可能層とデコーダ層に構造的帰納バイアスを組み込んで、クエリを自動で抽象構文木(AST)として予測する。
論文 参考訳(メタデータ) (2023-10-27T00:13:59Z) - Exploring the Compositional Generalization in Context Dependent
Text-to-SQL Parsing [14.644212594593919]
この研究は、文脈に依存したテクスト・トゥ・ザ・セサリオにおける作曲の一般化に関する最初の調査である。
実験によると、現在のモデルはすべて、提案されたベンチマークで苦労している。
テキスト・トゥ・ザ・セナリオの合成一般化を改善するために,textttp-align という手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T12:36:56Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
我々は最近提案されたQDMR(QDMR)という意味表現を活用している。
質問やQDMR構造(非専門家によって注釈付けされたり、自動予測されたりする)、回答が与えられたら、我々は自動的にsqlクエリを合成できる。
本結果は,NL-ベンチマークデータを用いて訓練したモデルと,弱い教師付きモデルが競合することを示す。
論文 参考訳(メタデータ) (2021-12-12T20:02:42Z) - Natural SQL: Making SQL Easier to Infer from Natural Language
Specifications [15.047104267689052]
我々はNatural SQL(Nat)と呼ばれるSQL中間表現を提案する。
挑戦的なテキスト・ツー・スキーマのベンチマークであるSpiderでは、Natが他のIRより優れており、以前のSOTAモデルの性能が大幅に向上することを示した。
実行可能生成をサポートしない既存のモデルでは、Natは実行可能クエリを容易に生成することができ、新しい最先端実行精度を実現する。
論文 参考訳(メタデータ) (2021-09-11T01:53:55Z) - Structure-Grounded Pretraining for Text-to-SQL [75.19554243393814]
本稿では,テキストからLARGEへの構造化事前学習フレームワーク(G)について述べる。
カラムグラウンド、バリューグラウンド、カラム値マッピングといった新しい予測タスクのセットを特定し、それらをテキストテーブルエンコーダの事前訓練に活用する。
論文 参考訳(メタデータ) (2020-10-24T04:35:35Z) - Bertrand-DR: Improving Text-to-SQL using a Discriminative Re-ranker [1.049360126069332]
生成テキスト-リミモデルの性能向上を図るために,新しい離散型リランカを提案する。
テキスト・ト・リミモデルとリランカモデルの相対強度を最適性能として解析する。
本稿では,2つの最先端テキスト-リミモデルに適用することで,リランカの有効性を実証する。
論文 参考訳(メタデータ) (2020-02-03T04:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。