RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented Generation through LLM Activation Analysis
- URL: http://arxiv.org/abs/2411.18948v2
- Date: Wed, 19 Feb 2025 04:09:14 GMT
- Title: RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented Generation through LLM Activation Analysis
- Authors: Xue Tan, Hao Luan, Mingyu Luo, Xiaoyan Sun, Ping Chen, Jun Dai,
- Abstract summary: RevPRAG is a flexible and automated detection pipeline that leverages the activations of LLMs for poisoned response detection.
Our results on multiple benchmark datasets and RAG architectures show our approach could achieve 98% true positive rate, while maintaining false positive rates close to 1%.
- Score: 3.706288937295861
- License:
- Abstract: Retrieval-Augmented Generation (RAG) enriches the input to LLMs by retrieving information from the relevant knowledge database, enabling them to produce responses that are more accurate and contextually appropriate. It is worth noting that the knowledge database, being sourced from publicly available channels such as Wikipedia, inevitably introduces a new attack surface. RAG poisoning involves injecting malicious texts into the knowledge database, ultimately leading to the generation of the attacker's target response (also called poisoned response). However, there are currently limited methods available for detecting such poisoning attacks. We aim to bridge the gap in this work. Particularly, we introduce RevPRAG, a flexible and automated detection pipeline that leverages the activations of LLMs for poisoned response detection. Our investigation uncovers distinct patterns in LLMs' activations when generating correct responses versus poisoned responses. Our results on multiple benchmark datasets and RAG architectures show our approach could achieve 98% true positive rate, while maintaining false positive rates close to 1%.
Related papers
- FlipedRAG: Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of Large Language Models [19.41533176888415]
Retrieval-Augmented Generation (RAG) addresses hallucination and real-time constraints by dynamically retrieving relevant information from a knowledge database.
In this paper, we unveil a more realistic and threatening scenario: opinion manipulation for controversial topics against RAG.
We propose a novel RAG black-box attack method, termed FlipedRAG, which is transfer-based.
arXiv Detail & Related papers (2025-01-06T12:24:57Z) - Data Extraction Attacks in Retrieval-Augmented Generation via Backdoors [15.861833242429228]
We investigate data extraction attacks targeting the knowledge databases of Retrieval-Augmented Generation (RAG) systems.
To reveal the vulnerability, we propose to backdoor RAG, where a small portion of poisoned data is injected during the fine-tuning phase to create a backdoor within the LLM.
arXiv Detail & Related papers (2024-11-03T22:27:40Z) - LLM Robustness Against Misinformation in Biomedical Question Answering [50.98256373698759]
The retrieval-augmented generation (RAG) approach is used to reduce the confabulation of large language models (LLMs) for question answering.
We evaluate the effectiveness and robustness of four LLMs against misinformation in answering biomedical questions.
arXiv Detail & Related papers (2024-10-27T16:23:26Z) - Backdoored Retrievers for Prompt Injection Attacks on Retrieval Augmented Generation of Large Language Models [0.0]
Retrieval Augmented Generation (RAG) addresses this issue by combining Large Language Models with up-to-date information retrieval.
This paper investigates prompt injection attacks on RAG, focusing on malicious objectives beyond misinformation.
We build upon existing corpus poisoning techniques and propose a novel backdoor attack aimed at the fine-tuning process of the dense retriever component.
arXiv Detail & Related papers (2024-10-18T14:02:34Z) - AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases [73.04652687616286]
We propose AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base.
Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning.
On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance.
arXiv Detail & Related papers (2024-07-17T17:59:47Z) - BadRAG: Identifying Vulnerabilities in Retrieval Augmented Generation of Large Language Models [18.107026036897132]
Large Language Models (LLMs) are constrained by outdated information and a tendency to generate incorrect data.
Retrieval-Augmented Generation (RAG) addresses these limitations by combining the strengths of retrieval-based methods and generative models.
RAG introduces a new attack surface for LLMs, particularly because RAG databases are often sourced from public data, such as the web.
arXiv Detail & Related papers (2024-06-03T02:25:33Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models [9.688626139309013]
Retrieval-Augmented Generation is considered as a means to improve the trustworthiness of text generation from large language models.
In this work, we find that the insertion of even a short prefix to the prompt leads to the generation of outputs far away from factually correct answers.
We introduce a novel optimization technique called Gradient Guided Prompt Perturbation.
arXiv Detail & Related papers (2024-02-11T12:25:41Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
We propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information.
By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples.
We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks.
arXiv Detail & Related papers (2023-06-06T14:45:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.