論文の概要: PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors
- arxiv url: http://arxiv.org/abs/2411.19036v1
- Date: Thu, 28 Nov 2024 10:31:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:19:09.263360
- Title: PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors
- Title(参考訳): PCDreamer:マルチビュー拡散プリミティブによるポイントクラウド補完
- Authors: Guangshun Wei, Yuan Feng, Long Ma, Chen Wang, Yuanfeng Zhou, Changjian Li,
- Abstract要約: PCDreamerは、ポイントクラウド補完のための新しい方法である。
我々は、大モデル内での相対的なビュー一貫性を持つ多視点拡散先を利用して、所望の形状の新たなビューを生成する。
- 参考スコア(独自算出の注目度): 15.744898273675757
- License:
- Abstract: This paper presents PCDreamer, a novel method for point cloud completion. Traditional methods typically extract features from partial point clouds to predict missing regions, but the large solution space often leads to unsatisfactory results. More recent approaches have started to use images as extra guidance, effectively improving performance, but obtaining paired data of images and partial point clouds is challenging in practice. To overcome these limitations, we harness the relatively view-consistent multi-view diffusion priors within large models, to generate novel views of the desired shape. The resulting image set encodes both global and local shape cues, which is especially beneficial for shape completion. To fully exploit the priors, we have designed a shape fusion module for producing an initial complete shape from multi-modality input (\ie, images and point clouds), and a follow-up shape consolidation module to obtain the final complete shape by discarding unreliable points introduced by the inconsistency from diffusion priors. Extensive experimental results demonstrate our superior performance, especially in recovering fine details.
- Abstract(参考訳): 本稿では,ポイントクラウド補完のための新しい手法であるPCDreamerを提案する。
従来の方法では、部分点雲から特徴を抽出して、欠落した領域を予測するが、大きな解空間はしばしば不満足な結果をもたらす。
近年のアプローチでは、イメージを追加のガイダンスとして使用し、パフォーマンスを効果的に向上する一方で、イメージと部分点クラウドのペアデータを取得することは現実的には難しい。
これらの制約を克服するために、我々は、大モデル内での相対的なビュー一貫性を持つ多視点拡散先を利用して、所望の形状の新たなビューを生成する。
得られた画像集合は、大域的および局所的な形状の手がかりの両方を符号化する。
先行点をフル活用するために,複数モード入力(画像,点雲)から初期完全形状を生成する形状融合モジュールと,拡散先行点から不整合によって生じる不整合点を排除して最終完全形状を得る追従形状整合モジュールを設計した。
広範囲な実験結果から,特に細部回復における優れた性能が示された。
関連論文リスト
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
我々は、オブジェクトレベルとカテゴリ固有の幾何学的類似性の両方を効果的に活用するフレームワークであるMAL-SPCを提案する。
私たちのMAL-SPCは3Dの完全な監視を一切必要とせず、各オブジェクトに1つの部分点クラウドを必要とするだけです。
論文 参考訳(メタデータ) (2024-07-13T06:53:39Z) - GPN: Generative Point-based NeRF [0.65268245109828]
我々は,部分的な雲を復元し,修復するために生成点ベースのNeRF (GPN) を提案する。
補修された点雲は、高空間分解能で撮像された画像との多視点整合を達成することができる。
論文 参考訳(メタデータ) (2024-04-12T08:14:17Z) - ComPC: Completing a 3D Point Cloud with 2D Diffusion Priors [52.72867922938023]
センサーを通して直接オブジェクトから収集される3Dポイント雲は、自己閉塞のため、しばしば不完全である。
トレーニングを必要とせずに、未確認のカテゴリにまたがる部分点雲を完結させるテストタイムフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T08:02:17Z) - Point Cloud Completion Guided by Prior Knowledge via Causal Inference [19.935868881427226]
本稿では,ポイントPCと呼ばれる新たなクラウド完了タスクを提案する。
Point-PCはメモリネットワークを用いて形状の先行情報を検索し、因果推論モデルを設計し、欠落した形状情報をフィルタリングする。
ShapeNet-55、PCN、KITTIデータセットの実験結果から、Point-PCは最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-28T16:33:35Z) - Prototype-Aware Heterogeneous Task for Point Cloud Completion [35.47134205562422]
ポイントクラウド補完は、部分的なポイントクラウドから元の形状情報を復元することを目的としている。
既存の方法は通常標準形状の完成に成功し、非標準形状の点雲の局所的な詳細を生成できない。
本研究では,クラス内形状表現の助けを借りて,標準形・非標準形を識別する効果的な手法を設計する。
論文 参考訳(メタデータ) (2022-09-05T02:43:06Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
エッジ生成(VE-PCN)を利用した点雲補完のためのボクセルネットワークを開発した。
まず点雲を正規のボクセル格子に埋め込み、幻覚した形状のエッジの助けを借りて完全な物体を生成する。
この分離されたアーキテクチャとマルチスケールのグリッド機能学習は、より現実的な表面上の詳細を生成することができる。
論文 参考訳(メタデータ) (2021-08-23T05:10:29Z) - SSPU-Net: Self-Supervised Point Cloud Upsampling via Differentiable
Rendering [21.563862632172363]
地中真理を使わずに高密度の点雲を生成するための自己教師付き点雲アップサンプリングネットワーク(SSPU-Net)を提案する。
これを実現するために,入力スパース点雲と高密度点雲との整合性を利用して画像の形状と描画を行う。
論文 参考訳(メタデータ) (2021-08-01T13:26:01Z) - Unsupervised 3D Shape Completion through GAN Inversion [116.27680045885849]
本稿では,GAN(Generative Adrial Network)インバージョンを導入したShapeInversionについて紹介する。
ShapeInversionは、与えられた部分入力に最も適した完全な形状を与える潜在コードを探すことで、完全な形状で事前訓練されたGANを使用する。
shapenetベンチマークでは、shapeinversion は sota unsupervised メソッドよりも優れており、ペアデータを用いて学習される教師ありメソッドに匹敵する。
論文 参考訳(メタデータ) (2021-04-27T17:53:46Z) - View-Guided Point Cloud Completion [43.139758470826806]
ViPC(ビューガイドポイントクラウド補完)は、欠落している重要なグローバル構造情報を追加のシングルビュー画像から取得します。
提案手法は,新しい大規模データセットにおいて,既存ソリューションよりも優れた結果が得られる。
論文 参考訳(メタデータ) (2021-04-12T17:35:45Z) - Weakly-supervised 3D Shape Completion in the Wild [91.04095516680438]
非整合および実世界の部分点雲から3次元完全形状を学習する問題に対処する。
複数の部分的な観察から3次元標準形状と6-DoFのアライメントを推定する弱い教師付き手法を提案する。
合成データと実データの両方の実験では、形状やポーズを伴わずに大規模なデータを通じて3次元形状の完成を学習することは可能であり、有望であることが示された。
論文 参考訳(メタデータ) (2020-08-20T17:53:42Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
本研究では,3Dポイントクラウド補完のためのSkip-Attention Network (SA-Net)を提案する。
まず,不完全点雲の局所構造を効果的に活用するためのスキップアテンション機構を提案する。
第二に、異なる解像度でスキップアテンション機構によって符号化された選択された幾何情報を完全に活用するために、新しい構造保存デコーダを提案する。
論文 参考訳(メタデータ) (2020-05-08T06:23:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。