Dynamic Attention and Bi-directional Fusion for Safety Helmet Wearing Detection
- URL: http://arxiv.org/abs/2411.19071v1
- Date: Thu, 28 Nov 2024 11:33:51 GMT
- Title: Dynamic Attention and Bi-directional Fusion for Safety Helmet Wearing Detection
- Authors: Junwei Feng, Xueyan Fan, Yuyang Chen, Yi Li,
- Abstract summary: This paper proposes a novel algorithm for safety helmet wearing detection, incorporating a dynamic attention within the detection head to enhance multi-scale perception.
Experimental results demonstrate a 1.7% improvement in mAP@[.5:.95] compared to the best baseline while reducing GFLOPs by 11.9% on larger sizes.
- Score: 5.120876889250054
- License:
- Abstract: Ensuring construction site safety requires accurate and real-time detection of workers' safety helmet use, despite challenges posed by cluttered environments, densely populated work areas, and hard-to-detect small or overlapping objects caused by building obstructions. This paper proposes a novel algorithm for safety helmet wearing detection, incorporating a dynamic attention within the detection head to enhance multi-scale perception. The mechanism combines feature-level attention for scale adaptation, spatial attention for spatial localization, and channel attention for task-specific insights, improving small object detection without additional computational overhead. Furthermore, a two-way fusion strategy enables bidirectional information flow, refining feature fusion through adaptive multi-scale weighting, and enhancing recognition of occluded targets. Experimental results demonstrate a 1.7% improvement in mAP@[.5:.95] compared to the best baseline while reducing GFLOPs by 11.9% on larger sizes. The proposed method surpasses existing models, providing an efficient and practical solution for real-world construction safety monitoring.
Related papers
- Enhanced PEC-YOLO for Detecting Improper Safety Gear Wearing Among Power Line Workers [0.0]
This paper proposes an enhanced PEC-YOLO object detection algorithm.
The method integrates deep perception with multi-scale feature fusion.
The CPCA attention mechanism is incorporated into the SPPF module, improving the model's ability to focus on critical information.
arXiv Detail & Related papers (2025-01-23T04:40:08Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.
Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.
We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - Enhancing Road Crack Detection Accuracy with BsS-YOLO: Optimizing Feature Fusion and Attention Mechanisms [0.0]
This paper presents the BsS-YOLO model, which optimize multi-scale feature fusion through an enhanced Path Aggregation Network (PAN) and Bidirectional Feature Pyramid Network (BiFPN)
The incorporation of weighted feature fusion improves feature representation, boosting detection accuracy and robustness.
Experimental results show that BsS-YOLO achieves a 2.8% increase in mean average precision (mAP) for road crack detection, supporting its applicability in diverse scenarios.
arXiv Detail & Related papers (2024-12-14T17:20:30Z) - Dual-Level Boost Network for Long-Tail Prohibited Items Detection in X-ray Security Inspection [81.11400642272976]
Long-tail distribution of prohibited items in X-ray security inspections poses a big challenge for detection models.
We propose a Dual-level Boost Network (DBNet) specifically designed to overcome these challenges in X-ray security screening.
Our approach introduces two key innovations: (1) a specific data augmentation strategy employing Poisson blending, inspired by the characteristics of X-ray images, to generate realistic synthetic instances of rare items which can effectively mitigate data imbalance; and (2) a context-aware feature enhancement module that captures the spatial and semantic interactions between objects and their surroundings, enhancing classification accuracy for underrepresented categories.
arXiv Detail & Related papers (2024-11-27T06:13:56Z) - Real-Time Detection for Small UAVs: Combining YOLO and Multi-frame Motion Analysis [0.8971132850029493]
Unmanned Aerial Vehicle (UAV) detection technology plays a critical role in mitigating security risks and safeguarding privacy in both military and civilian applications.
Traditional detection methods face significant challenges in identifying UAV targets with extremely small pixels at long distances.
We propose the Global-Local YOLO-Motion (GL-YOMO) detection algorithm, which combines You Only Look Once (YOLO) object detection with multi-frame motion detection techniques.
arXiv Detail & Related papers (2024-10-10T14:30:50Z) - Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
This study proposes a novel deep learning framework inspired by atmospheric scattering and human visual cortex mechanisms to enhance object detection under poor visibility scenarios such as fog, smoke, and haze.
The objective is to enhance the precision and reliability of detection systems under adverse environmental conditions.
arXiv Detail & Related papers (2024-10-02T04:03:07Z) - Better YOLO with Attention-Augmented Network and Enhanced Generalization Performance for Safety Helmet Detection [16.09131958448249]
We present a novel approach by incorporating a lightweight feature extraction network backbone based on GhostNetv2.
In safety-critical environments, the accurate detection and speed of safety helmets plays a pivotal role in preventing occupational hazards and ensuring compliance with safety protocols.
arXiv Detail & Related papers (2024-05-04T07:13:47Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.