Impact of leakage to the dynamic of a ST$_0$ qubit implemented on a Double Quantum Dot device
- URL: http://arxiv.org/abs/2411.19179v1
- Date: Thu, 28 Nov 2024 14:34:23 GMT
- Title: Impact of leakage to the dynamic of a ST$_0$ qubit implemented on a Double Quantum Dot device
- Authors: Javier Oliva del Moral, Olatz Sanz Larrarte, Reza Dastbasteh, Josu Etxezarreta Martinez, Rubén M. Otxoa,
- Abstract summary: We study the impact of leakage during the gate time evolution of a spin qubit encoded in a double quantum dot device.<n>We prove that, in the weak interaction regime, leakage introduces a shift in the phase of the time evolution operator.<n>This is crucial for running fault-tolerant algorithms and is beneficial for Quantum Error Mitigation techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin qubits in quantum dots are a promising technology for quantum computing due to their fast response time and long coherence times. An electromagnetic pulse is applied to the system for a specific duration to perform a desired rotation. To avoid decoherence, the amplitude and gate time must be highly accurate. In this work, we aim to study the impact of leakage during the gate time evolution of a spin qubit encoded in a double quantum dot device. We prove that, in the weak interaction regime, leakage introduces a shift in the phase of the time evolution operator, causing over- or under-rotations. Indeed, controlling the leakage terms is useful for adjusting the time needed to perform a quantum computation. This is crucial for running fault-tolerant algorithms and is beneficial for Quantum Error Mitigation techniques.
Related papers
- A Time Optimization Framework for the Implementation of Robust and Low-latency Quantum Circuits [0.0]
We introduce an alternative pulse scheduling approach that enables the use of both fast and robust quantum gates within the same quantum circuit.
Experiments conducted on IBMQ Brisbane show that this approach improves the absolute success probability of quantum circuit execution by more than 25%.
arXiv Detail & Related papers (2024-12-24T16:26:05Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Trade-off between Noise and Banding in a Quantum Adder with Qudits [0.0]
Quantum addition based on the quantum Fourier transform can be an integral part of a quantum circuit.
We analytically prove an upper bound on the number of the controlled rotation gates required to accomplish the quantum addition up to an arbitrary defect.
We demonstrate that utilizing magnetic fields to prepare an initial state that evolves according to a one-dimensional spin chain can be a potential technique to implement quantum addition circuits in many-body systems.
arXiv Detail & Related papers (2023-10-17T18:22:23Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Time-optimal universal quantum gates on superconducting circuits [1.5512702032483539]
We propose a scheme to realize universal quantum gates on superconducting qubits in a two-dimensional square lattice configuration.
In order to reduce the influence of the dephasing error, decoherence-free subspace encoding is also incorporated in our physical implementation.
arXiv Detail & Related papers (2023-01-09T13:41:56Z) - Error Mitigation in Quantum Computers through Instruction Scheduling [7.0230815242347475]
Current quantum devices suffer from the rapid accumulation of error that prevents the storage of quantum information over extended periods.
This paper presents TimeStitch, a framework that pinpoints the optimum execution schedules for single-qubit gates within quantum circuits.
arXiv Detail & Related papers (2021-05-04T20:58:58Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Experimentally Realizing Efficient Quantum Control with Reinforcement
Learning [2.733342606024131]
We experimentally demonstrate an alternative approach to quantum control based on deep reinforcement learning (DRL) on a trapped $171mathrmYb+$ ion.
In particular, we find that DRL leads to fast and robust digital quantum operations with running time bounded by shortcuts to adiabaticity (STA)
Our experiments reveal a general framework of digital quantum control, leading to a promising enhancement in quantum information processing.
arXiv Detail & Related papers (2021-01-22T09:34:58Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Variationally Scheduled Quantum Simulation [0.0]
We investigate a variational method for determining the optimal scheduling procedure within the context of adiabatic state preparation.
In the absence of quantum error correction, running a quantum device for any meaningful amount of time causes a system to become susceptible to the loss of relevant information.
Our variational method is found to exhibit resilience against control errors, which are commonly encountered within the realm of quantum computing.
arXiv Detail & Related papers (2020-03-22T14:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.