Performance of a Superconducting Quantum Battery
- URL: http://arxiv.org/abs/2411.19247v2
- Date: Wed, 26 Mar 2025 16:37:27 GMT
- Title: Performance of a Superconducting Quantum Battery
- Authors: Samira Elghaayda, Asad Ali, Saif Al-Kuwari, Artur Czerwinski, Mostafa Mansour, Saeed Haddadi,
- Abstract summary: A superconducting quantum battery (SQB) model that exhibits a quantum advantage is introduced.<n>The model is described, evidence of the quantum advantage is provided, and then the fabrication process of the battery is discussed.
- Score: 0.5937476291232802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding a quantum battery model that demonstrates a quantum advantage while remaining feasible for experimental production is a considerable challenge. Here, a superconducting quantum battery (SQB) model that exhibits such an advantage is introduced. The model consists of two coupled superconducting qubits that interact during the unitary charging process while remaining in equilibrium with a thermal reservoir. First, the model is described, evidence of the quantum advantage is provided, and then the fabrication process of the battery is discussed using superconducting qubits. Analytical expressions for the ergotropy, instantaneous power, and capacity of the SQB, as well as their connection to quantum coherence are derived. It is demonstrated that leveraging the collective effects of Josephson energies and the coupling energy between qubits allows for optimization, resulting in improved energy redistribution and a significant enhancement in charging efficiency. This work highlights the complexities of tuning system parameters, which increase the potential for work extraction from the SQB, providing a deeper understanding of the charging mechanisms involved. These findings can be applied to superconducting quantum circuit battery architectures, underscoring the feasibility of efficient energy storage in these systems. These results pave the way for proposals of new superconducting devices, emphasizing their potential for efficient energy storage.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Nonreciprocal Quantum Batteries [0.0]
We introduce nonreciprocity through reservoir engineering during the charging process, resulting in a substantial increase in energy accumulation.
Despite local dissipation, the nonreciprocal approach demonstrates a fourfold increase in battery energy.
In a broader context, the concept of nonreciprocal charging has significant implications for sensing, energy capture, and storage technologies.
arXiv Detail & Related papers (2024-01-10T11:50:03Z) - A quantum battery with quadratic driving [0.0]
Quantum batteries are energy storage devices built using quantum mechanical objects.
We study theoretically a bipartite quantum battery model, composed of a driven charger connected to an energy holder.
arXiv Detail & Related papers (2023-11-04T15:01:36Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Quantum Work Capacitances: ultimate limits for energy extraction on noisy quantum batteries [1.1768314197952987]
We present a theoretical analysis of the energy recovery efficiency for quantum batteries composed of many identical quantum cells undergoing noise.
Explicit evaluations of such quantities are presented for the case where the energy storing system undergoes through dephasing and depolarizing noise.
arXiv Detail & Related papers (2022-11-04T18:08:46Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Quantum advantage in charging cavity and spin batteries by repeated
interactions [0.0]
Recently, an unconditional advantage has been demonstrated for the process of charging of a quantum battery in a collisional model.
We consider a model where the battery is modeled by a quantum harmonic oscillator or a large spin, charged via repeated interactions with a stream of non-equilibrium qubit units.
For both setups, we show that a quantum protocol can significantly outperform the most general adaptive classical schemes.
arXiv Detail & Related papers (2022-04-29T18:04:27Z) - Optimal charging of a superconducting quantum battery [13.084212951440033]
We report the experimental realization of a quantum battery based on superconducting qubits.
Our model explores dark and bright states to achieve stable and powerful charging processes, respectively.
Our results pave the way for proposals of new superconducting circuits able to store extractable work for further usage.
arXiv Detail & Related papers (2021-08-09T18:53:07Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.