Distribution-Free Calibration of Statistical Confidence Sets
- URL: http://arxiv.org/abs/2411.19368v1
- Date: Thu, 28 Nov 2024 20:45:59 GMT
- Title: Distribution-Free Calibration of Statistical Confidence Sets
- Authors: Luben M. C. Cabezas, Guilherme P. Soares, Thiago R. Ramos, Rafael B. Stern, Rafael Izbicki,
- Abstract summary: We introduce two novel methods, TRUST and TRUST++, for calibrating confidence sets to achieve distribution-free conditional coverage.
We demonstrate that our methods outperform existing approaches, particularly in small-sample regimes.
- Score: 2.283561089098417
- License:
- Abstract: Constructing valid confidence sets is a crucial task in statistical inference, yet traditional methods often face challenges when dealing with complex models or limited observed sample sizes. These challenges are frequently encountered in modern applications, such as Likelihood-Free Inference (LFI). In these settings, confidence sets may fail to maintain a confidence level close to the nominal value. In this paper, we introduce two novel methods, TRUST and TRUST++, for calibrating confidence sets to achieve distribution-free conditional coverage. These methods rely entirely on simulated data from the statistical model to perform calibration. Leveraging insights from conformal prediction techniques adapted to the statistical inference context, our methods ensure both finite-sample local coverage and asymptotic conditional coverage as the number of simulations increases, even if n is small. They effectively handle nuisance parameters and provide computationally efficient uncertainty quantification for the estimated confidence sets. This allows users to assess whether additional simulations are necessary for robust inference. Through theoretical analysis and experiments on models with both tractable and intractable likelihoods, we demonstrate that our methods outperform existing approaches, particularly in small-sample regimes. This work bridges the gap between conformal prediction and statistical inference, offering practical tools for constructing valid confidence sets in complex models.
Related papers
- Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.
We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - Simulation-based, Finite-sample Inference for Privatized Data [14.218697973204065]
We propose a simulation-based "repro sample" approach to produce statistically valid confidence intervals and hypothesis tests.
We show that this methodology is applicable to a wide variety of private inference problems.
arXiv Detail & Related papers (2023-03-09T15:19:31Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Calibrating Over-Parametrized Simulation Models: A Framework via
Eligibility Set [3.862247454265944]
We develop a framework to develop calibration schemes that satisfy rigorous frequentist statistical guarantees.
We demonstrate our methodology on several numerical examples, including an application to calibration of a limit order book market simulator.
arXiv Detail & Related papers (2021-05-27T00:59:29Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
We study high-confidence behavior-agnostic off-policy evaluation in reinforcement learning.
We show in a variety of benchmarks that the confidence interval estimates are tighter and more accurate than existing methods.
arXiv Detail & Related papers (2020-10-22T12:39:11Z) - Statistical Bootstrapping for Uncertainty Estimation in Off-Policy
Evaluation [38.31971190670345]
We investigate the potential for statistical bootstrapping to be used as a way to produce calibrated confidence intervals for the true value of the policy.
We show that it can yield accurate confidence intervals in a variety of conditions, including challenging continuous control environments and small data regimes.
arXiv Detail & Related papers (2020-07-27T14:49:22Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.