論文の概要: Quantum Annealing based Feature Selection in Machine Learning
- arxiv url: http://arxiv.org/abs/2411.19609v1
- Date: Fri, 29 Nov 2024 10:52:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:19:41.778978
- Title: Quantum Annealing based Feature Selection in Machine Learning
- Title(参考訳): 機械学習における量子アニーリングに基づく特徴選択
- Authors: Daniel Pranjic, Bharadwaj Chowdary Mummaneni, Christian Tutschku,
- Abstract要約: 特徴選択は、機械学習(ML)モデルの精度と効率を高めるために不可欠である。
相互情報(MI)や条件付き相互情報(CMI)を最大化する最適な特徴の集合を計算することは、古典的コンピュータ上の大規模なデータセットに対して計算的に計算可能である。
本研究は,MIQUBO(Multual Information Quadratic Unconstrained Binary Optimization)の定式化を用いて,量子アニール板上での解法を実現する。
- 参考スコア(独自算出の注目度): 0.6437284704257459
- License:
- Abstract: Feature selection is crucial for enhancing the accuracy and efficiency of machine learning (ML) models. This work investigates the utility of quantum annealing for the feature selection process in an ML-pipeline, used for maximizing the mutual information (MI) or conditional mutual information (CMI) of the underlying feature space. Calculating the optimal set of features that maximize the MI or CMI is computationally intractable for large datasets on classical computers, even with approximative methods. This study employs a Mutual Information Quadratic Unconstrained Binary Optimization (MIQUBO) formulation, enabling its solution on a quantum annealer. We demonstrate the capability of this approach to identify the best feature combinations that maximize the MI or CMI. To showcase its real-world applicability, we solve the MIQUBO problem to forecast the prices of used excavators. Our results demonstrate that for datasets with a small MI concentration the MIQUBO approach can provide a significant improvement over MI-only based approaches, dependent on the dimension of the selected feature space.
- Abstract(参考訳): 特徴選択は、機械学習(ML)モデルの精度と効率を高めるために不可欠である。
本研究では、基本特徴空間の相互情報(MI)や条件付き相互情報(CMI)の最大化に使用されるML-ピペリンの特徴選択プロセスにおける量子アニールの有用性について検討する。
MI や CMI を最大化する最適な特徴の集合を計算することは、近似法でさえも、古典的コンピュータ上の大規模なデータセットに対して計算的に難解である。
本研究は,MIQUBO(Multual Information Quadratic Unconstrained Binary Optimization)の定式化を用いて,量子アニール板上での解法を実現する。
このアプローチがMIやCMIを最大化する最適な機能の組み合わせを識別する能力を示す。
実世界の適用性を示すため,MIQUBO問題を解き,使用済み掘削機の価格を推定する。
以上の結果から,MI濃度が小さいデータセットの場合,MIQUBOアプローチは,選択した特徴空間の次元に依存するMIのみに基づくアプローチよりも大幅に改善できることが示唆された。
関連論文リスト
- LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - Machine Learning Optimized Approach for Parameter Selection in MESHFREE Simulations [0.0]
従来のメッシュベースのアプローチに代わる魅力的な代替手段として、メッシュフリーシミュレーション手法が登場している。
機械学習(ML)とFraunhoferのMESHFREEソフトウェアを組み合わせた研究の概要について概説する。
本稿では,MESHFREEシミュレーションデータに能動的学習,回帰木を用いたML最適化手法を提案する。
論文 参考訳(メタデータ) (2024-03-20T15:29:59Z) - AFS-BM: Enhancing Model Performance through Adaptive Feature Selection with Binary Masking [0.0]
連立マスキングによる適応的特徴選択(AFS-BM)について紹介する。
トレーニングプロセス中に特徴セットとモデルパラメータを継続的に適応するために、共同最適化とバイナリマスキングを実施します。
以上の結果から,AFS-BMの精度は大幅に向上し,計算量も大幅に削減された。
論文 参考訳(メタデータ) (2024-01-20T15:09:41Z) - A novel feature selection method based on quantum support vector machine [3.6953740776904924]
特徴の選択は、次元を減らし、モデルの精度と効率を改善するために機械学習において重要である。
本稿では,量子支援ベクトルマシンと遺伝的アルゴリズムを統合した量子支援ベクトルマシン特徴選択法(QSVMF)を提案する。
乳がんデータセットの特徴選択にQSVMFを適用し、QSVMFの性能と古典的アプローチを比較した。
論文 参考訳(メタデータ) (2023-11-29T14:08:26Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Feature Selection for Classification with QAOA [11.516147824168732]
特徴選択は機械学習において非常に重要であり、分類、ランク付け、予測問題の次元化に使用できる。
我々は特に、すでに最適化に使われている近似量子最適化(QAOA)に対処できる二次的特徴選択問題を考える。
実験では,次元が21まで異なる7つの実世界のデータセットについて検討し,量子シミュレータと小型データセットの両方でQAOAを実行する。
論文 参考訳(メタデータ) (2022-11-05T09:28:53Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
本稿では,VampPriorとPixelCNNデコーダネットワークを用いて,フローベース階層型変分オートエンコーダ(VAE)の正規化のための変分近似を初めて提案する。
我々は、この協調行動について、VIと適応的重要度サンプリングの新たな関係を描いて説明する。
我々は、MNISTおよびFashionMNISTデータセット上の負のログ類似度の観点から、VAEアーキテクチャの最先端結果を得る。
論文 参考訳(メタデータ) (2022-09-30T15:01:35Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。