論文の概要: TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2411.19654v1
- Date: Fri, 29 Nov 2024 12:19:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:19:01.861433
- Title: TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting
- Title(参考訳): TexGaussian:Octree-based 3D Gaussian Splattingによる高品質PBR材料の生成
- Authors: Bojun Xiong, Jialun Liu, Jiakui Hu, Chenming Wu, Jinbo Wu, Xing Liu, Chen Zhao, Errui Ding, Zhouhui Lian,
- Abstract要約: 本稿では, 八面体配向型3次元ガウス平板を用いた高速PBR材料生成のためのTexGaussianを提案する。
本手法は,PBR素材をより視覚的に合成し,非条件シナリオとテキスト条件シナリオの両方において,従来の方法よりも高速に動作させる。
- 参考スコア(独自算出の注目度): 48.97819552366636
- License:
- Abstract: Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multiview images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, which exhibit better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
- Abstract(参考訳): 物理ベースレンダリング(PBR)素材は、現代グラフィックにおいて重要な役割を担い、多様な環境マップにまたがるフォトリアリスティックレンダリングを可能にしている。
3DメッシュのためのRGBテクスチャではなく、高品質なPBR素材を自動的に生成できる効率的かつ効率的なアルゴリズムの開発は、3Dコンテンツ作成を大幅に効率化することができる。
既存のほとんどの手法では、事前学習した2次元拡散モデルを用いてマルチビュー画像合成を行い、生成したテクスチャと入力3Dメッシュの間に深刻な矛盾が生じている。
本稿では, 八面体配向型3次元ガウス平板を用いた高速PBR材料生成のためのTexGaussianを提案する。
具体的には、入力された3Dメッシュから構築されたオクツリーの最も微細な葉ノードに各3Dガウスアンを配置し、アルベドマップだけでなく、粗さや金属についてもマルチビュー画像をレンダリングする。
さらに,3次元メッシュ用PBR材料を単一フィードフォワードプロセスで生成し,拡散デノナイジングの代わりに回帰的に訓練する。
提案手法はPBR材料をより視覚的に合成し, 従来手法よりも高速に動作し, 非条件・テキスト条件の両シナリオにおいて, 与えられた形状との整合性が向上することを示した。
私たちのコードとトレーニングされたモデルはhttps://3d-aigc.github.io/TexGaussian.orgで公開されています。
関連論文リスト
- Bridging 3D Gaussian and Mesh for Freeview Video Rendering [57.21847030980905]
GauMeshはダイナミックシーンのモデリングとレンダリングのために3D GaussianとMeshをブリッジする。
提案手法は, 動的シーンの異なる部分を表現するために, プリミティブの適切なタイプに適応することを示す。
論文 参考訳(メタデータ) (2024-03-18T04:01:26Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
Amortized Generative 3D Gaussian framework (AGG) を導入する。
AGGは、共同最適化のための3Dガウス位置およびその他の外観特性の生成を分解する。
本稿では,まず3次元データの粗い表現を生成し,後に3次元ガウス超解像モジュールでアップサンプリングするカスケードパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-08T18:56:33Z) - Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D
Reconstruction with Transformers [37.14235383028582]
本稿では,フィードフォワード推論を用いて,単一画像から3次元モデルを効率よく生成する,一視点再構成のための新しい手法を提案する。
提案手法では,2つのトランスフォーマーネットワーク,すなわちポイントデコーダとトリプレーンデコーダを用いて,ハイブリッドトリプレーン・ガウス中間表現を用いて3次元オブジェクトを再構成する。
論文 参考訳(メタデータ) (2023-12-14T17:18:34Z) - TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion
Models [77.85129451435704]
大規模誘導画像拡散モデルを用いて3次元テクスチャを合成する手法を提案する。
具体的には、潜時拡散モデルを利用し、セット・デノナイジング・モデルと集合・デノナイジング・テキスト・マップを適用する。
論文 参考訳(メタデータ) (2023-10-20T19:15:29Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
テキストと画像の合成の最近の進歩は、何十億もの画像と画像のペアで訓練された拡散モデルによって引き起こされている。
本研究では,事前訓練された2次元テキスト・ツー・イメージ拡散モデルを用いてテキスト・ツー・3次元合成を行うことにより,これらの制約を回避する。
提案手法では,3次元トレーニングデータや画像拡散モデルの変更は必要とせず,事前訓練した画像拡散モデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-09-29T17:50:40Z) - On Demand Solid Texture Synthesis Using Deep 3D Networks [3.1542695050861544]
本稿では,ディープラーニングフレームワークに基づくオンデマンドテクスチャ合成のための新しいアプローチについて述べる。
任意の大きさの固形テクスチャのコヒーレント部分を合成するために、生成ネットワークを訓練する。
合成されたボリュームは、少なくとも最先端のパッチベースのアプローチと同等の視覚的結果が得られる。
論文 参考訳(メタデータ) (2020-01-13T20:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。