論文の概要: Gated-Attention Feature-Fusion Based Framework for Poverty Prediction
- arxiv url: http://arxiv.org/abs/2411.19690v1
- Date: Fri, 29 Nov 2024 13:24:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:23:20.697675
- Title: Gated-Attention Feature-Fusion Based Framework for Poverty Prediction
- Title(参考訳): Gated-Attention Feature-Fusion Based Framework for Poverty Prediction
- Authors: Muhammad Umer Ramzan, Wahab Khaddim, Muhammad Ehsan Rana, Usman Ali, Manohar Ali, Fiaz ul Hassan, Fatima Mehmood,
- Abstract要約: 我々は、GAFM(Gated-Attention Feature-Fusion Module)を組み込んだResNet50モデルを拡張した最先端の畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
我々のアーキテクチャは、衛星画像からグローバルな特徴とローカルな特徴の両方をキャプチャする能力を向上させるために設計されており、より正確な貧困推定に繋がる。
このモデルは75%のR2スコアを達成し、貧困マッピングにおける既存の先行手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 0.6631181391704224
- License:
- Abstract: This research paper addresses the significant challenge of accurately estimating poverty levels using deep learning, particularly in developing regions where traditional methods like household surveys are often costly, infrequent, and quickly become outdated. To address these issues, we propose a state-of-the-art Convolutional Neural Network (CNN) architecture, extending the ResNet50 model by incorporating a Gated-Attention Feature-Fusion Module (GAFM). Our architecture is designed to improve the model's ability to capture and combine both global and local features from satellite images, leading to more accurate poverty estimates. The model achieves a 75% R2 score, significantly outperforming existing leading methods in poverty mapping. This improvement is due to the model's capacity to focus on and refine the most relevant features, filtering out unnecessary data, which makes it a powerful tool for remote sensing and poverty estimation.
- Abstract(参考訳): 本研究では、特に家庭調査のような伝統的な手法が費用がかかり、頻度が低く、時代遅れになり、急速に時代遅れになる発展途上国において、ディープラーニングを用いた貧困レベルを正確に推定する重要な課題について論じる。
これらの課題に対処するために,Gated-Attention Feature-Fusion Module (GAFM)を導入してResNet50モデルを拡張した,最先端の畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
我々のアーキテクチャは、衛星画像からグローバルな特徴とローカルな特徴を捕捉し、組み合わせることにより、より正確な貧困推定を実現するために設計されている。
このモデルは75%のR2スコアを達成し、貧困マッピングにおける既存の先行手法を著しく上回っている。
この改善は、モデルが最も重要な機能に集中し、洗練し、不要なデータをフィルタリングすることで、リモートセンシングと貧困評価のための強力なツールになるためである。
関連論文リスト
- Improving Out-of-Distribution Data Handling and Corruption Resistance via Modern Hopfield Networks [0.0]
本研究は,コンピュータビジョンモデルによるアウト・オブ・ディストリビューションデータ処理能力の向上における,Modern Hopfield Networks (MHN) の可能性を探るものである。
我々は,MHNをベースラインモデルに統合し,ロバスト性を高めることを提案する。
本研究は,MNIST-Cデータセットのモデル性能を一貫して向上することを示す。
論文 参考訳(メタデータ) (2024-08-21T03:26:16Z) - Deep Learning for Slum Mapping in Remote Sensing Images: A Meta-analysis and Review [2.1383489372142503]
何百万人もの人々が、世界中の多くの主要都市で生活状態の悪いスラムや非公式の集落に住んでいる。
リモートセンシングによるスラムのマッピングが顕著な研究領域として浮上している。
ディープ・ラーニング(Deep Learning)は、衛星画像の自動解析によってスラムに関連する複雑な空間パターンを識別できるようにするため、この分野に新たな次元を追加した。
論文 参考訳(メタデータ) (2024-06-12T09:31:52Z) - ProvNeRF: Modeling per Point Provenance in NeRFs as a Stochastic Field [52.09661042881063]
テキストフィールドとしてNeRFのbfprovenance(可視な位置)をモデル化する手法を提案する。
我々は、NeRF最適化におけるポイントごとの精度のモデリングにより、新しいビュー合成と不確実性推定の改善につながる情報により、モデルが強化されることを示す。
論文 参考訳(メタデータ) (2024-01-16T06:19:18Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
6つの分類と6つのセグメンテーションタスクからなるベンチマークを提案する。
このベンチマークは、さまざまな地球観測タスクの進行の原動力となる。
論文 参考訳(メタデータ) (2023-06-06T16:16:05Z) - Interpreting wealth distribution via poverty map inference using
multimodal data [0.0]
本稿では,複数の人口にまたがる富の平均および標準偏差を推論する機械学習モデルのパイプラインを提案する。
これらのモデルは、衛星画像と、オンラインのクラウドソーシングとソーシャルメディアを通じて収集されたメタデータに基づいて、7つの独立した、自由に利用可能な機能ソースを利用する。
その結果, 富の局所的平均と変動が回復し, 正の非単調な相関関係を正しく捉えた。
論文 参考訳(メタデータ) (2023-02-17T11:35:44Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
本稿では,低解像度衛星画像のみを用いた建物被覆量の推定手法を提案する。
本モデルでは, 世界中の開発レベルの異なる地域において, 建築範囲の予測において最大0.968の判定係数を達成している。
論文 参考訳(メタデータ) (2023-01-04T05:19:33Z) - Interpretable Poverty Mapping using Social Media Data, Satellite Images,
and Geospatial Information [0.0]
本稿では、機械学習とアクセスしやすいデータソースを用いた貧困推定に対する解釈可能かつ費用効率のよいアプローチを提案する。
フィリピンの資産推定ではR2ドル0.66ドル、衛星画像では0.63ドルである。
論文 参考訳(メタデータ) (2020-11-27T05:24:53Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - CHEER: Rich Model Helps Poor Model via Knowledge Infusion [69.23072792708263]
我々は、そのようなリッチなモデルを伝達可能な表現に簡潔に要約できる知識注入フレームワークCHEERを開発した。
実験の結果、CHEERは複数の生理的データセットのマクロF1スコアにおいて、ベースラインを5.60%から46.80%上回った。
論文 参考訳(メタデータ) (2020-05-21T21:44:21Z) - Generating Interpretable Poverty Maps using Object Detection in
Satellite Images [80.35540308137043]
衛星画像に物体検出装置を適用することにより、局所レベルでの貧困を正確に予測するための解釈可能な計算手法を実証する。
対象物の重み付けを特徴として、ウガンダの村レベルの貧困を予測する0.539 Pearson's r2を達成し、既存の(解釈不可能でない)ベンチマークよりも31%改善した。
論文 参考訳(メタデータ) (2020-02-05T02:50:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。