DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering
- URL: http://arxiv.org/abs/2411.19756v2
- Date: Wed, 26 Mar 2025 15:13:24 GMT
- Title: DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering
- Authors: Yihao Wang, Marcus Klasson, Matias Turkulainen, Shuzhe Wang, Juho Kannala, Arno Solin,
- Abstract summary: DeSplat is a novel method for separating distractors and static scene elements purely based on volume rendering of Gaussian primitives.<n>We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis.
- Score: 18.72451738333928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at https://aaltoml.github.io/desplat/.
Related papers
- RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS [79.15416002879239]
3D Gaussian Splatting has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling.<n>Existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images.<n>We propose RobustSplat, a robust solution based on two critical designs.
arXiv Detail & Related papers (2025-06-03T11:13:48Z) - AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views [57.13066710710485]
AnySplat is a feed forward network for novel view synthesis from uncalibrated image collections.<n>A single forward pass yields a set of 3D Gaussian primitives encoding both scene geometry and appearance.<n>In extensive zero shot evaluations, AnySplat matches the quality of pose aware baselines in both sparse and dense view scenarios.
arXiv Detail & Related papers (2025-05-29T17:49:56Z) - Decoupling Appearance Variations with 3D Consistent Features in Gaussian Splatting [50.98884579463359]
We propose DAVIGS, a method that decouples appearance variations in a plug-and-play manner.
By transforming the rendering results at the image level instead of the Gaussian level, our approach can model appearance variations with minimal optimization time and memory overhead.
We validate our method on several appearance-variant scenes, and demonstrate that it achieves state-of-the-art rendering quality with minimal training time and memory usage.
arXiv Detail & Related papers (2025-01-18T14:55:58Z) - Occam's LGS: An Efficient Approach for Language Gaussian Splatting [57.00354758206751]
We show that the complicated pipelines for language 3D Gaussian Splatting are simply unnecessary.
We apply Occam's razor to the task at hand, leading to a highly efficient weighted multi-view feature aggregation technique.
arXiv Detail & Related papers (2024-12-02T18:50:37Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - Few-shot Novel View Synthesis using Depth Aware 3D Gaussian Splatting [0.0]
3D Gaussian splatting has surpassed neural radiance field methods in novel view synthesis.
It produces a high-quality rendering with a lot of input views, but its performance drops significantly when only a few views are available.
We propose a depth-aware Gaussian splatting method for few-shot novel view synthesis.
arXiv Detail & Related papers (2024-10-14T20:42:30Z) - SplatLoc: 3D Gaussian Splatting-based Visual Localization for Augmented Reality [50.179377002092416]
We propose an efficient visual localization method capable of high-quality rendering with fewer parameters.
Our method achieves superior or comparable rendering and localization performance to state-of-the-art implicit-based visual localization approaches.
arXiv Detail & Related papers (2024-09-21T08:46:16Z) - Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs [29.669534899109028]
We introduce Splatt3R, a pose-free, feed-forward method for in-the-wild 3D reconstruction and novel view synthesis from stereo pairs.
Given uncalibrated natural images, Splatt3R can predict 3D Gaussian Splats without requiring any camera parameters or depth information.
Splatt3R can reconstruct scenes at 4FPS at 512 x 512 resolution, and the resultant splats can be rendered in real-time.
arXiv Detail & Related papers (2024-08-25T18:27:20Z) - SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting [44.42317312908314]
3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds.
Current methods require highly controlled environments to meet the inter-view consistency assumption of 3DGS.
We present SpotLessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors.
arXiv Detail & Related papers (2024-06-28T17:07:11Z) - Superpoint Gaussian Splatting for Real-Time High-Fidelity Dynamic Scene Reconstruction [10.208558194785017]
We propose a novel framework named Superpoint Gaussian Splatting (SP-GS)
Our framework first reconstructs the scene and then clusters Gaussians with similar properties into superpoints.
Empowered by these superpoints, our method manages to extend 3D Gaussian splatting to dynamic scenes with only a slight increase in computational expense.
arXiv Detail & Related papers (2024-06-06T02:32:41Z) - FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes [50.534213038479926]
FreeSplat is capable of reconstructing geometrically consistent 3D scenes from long sequence input towards free-view synthesis.
We propose a simple but effective free-view training strategy that ensures robust view synthesis across broader view range regardless of the number of views.
arXiv Detail & Related papers (2024-05-28T08:40:14Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3D Gaussian Splatting (3DGS) has emerged as an efficient approach for accurately representing scenes.
We propose a novel approach for bridging the gap between the noisy 3DGS representation and the smooth 3D mesh representation.
We render stereo-aligned pairs of images corresponding to the original training poses, feed the pairs into a stereo model to get a depth profile, and finally fuse all of the profiles together to get a single mesh.
arXiv Detail & Related papers (2024-04-02T10:13:18Z) - InstantSplat: Sparse-view SfM-free Gaussian Splatting in Seconds [91.77050739918037]
Novel view synthesis (NVS) from a sparse set of images has advanced significantly in 3D computer vision.
It relies on precise initial estimation of camera parameters using Structure-from-Motion (SfM)
In this study, we introduce a novel and efficient framework to enhance robust NVS from sparse-view images.
arXiv Detail & Related papers (2024-03-29T17:29:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.