論文の概要: Voice Communication Analysis in Esports
- arxiv url: http://arxiv.org/abs/2411.19793v1
- Date: Thu, 21 Nov 2024 12:21:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 08:47:22.486331
- Title: Voice Communication Analysis in Esports
- Title(参考訳): スポーツにおける音声コミュニケーションの分析
- Authors: Aymeric Vinot, Nicolas Perez,
- Abstract要約: ほとんどのチームベースのエスポートでは、音声通信はチームの効率性とシナジーにおいて顕著である。
この研究は、League of Legends esportのプリズムを通じて行われた。
主要な概念とアイデアは、他のチーム関連のエスポートにも容易に適用できます。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In most team-based esports, voice communications are prominent in the team efficiency and synergy. In fact it has been observed that not only the skill aspect of the team but also the team effective voice communication comes into play when trying to have good performance in official matches. With the recent emergence of LLM (Large Language Models) tools regarding NLP (Natural Language Processing) (Vaswani et. al.), we decided to try applying them in order to have a better understanding on how to improve the effectiveness of the voice communications. In this paper the study has been made through the prism of League of Legends esport. However the main concepts and ideas can be easily applicable in any other team related esports.
- Abstract(参考訳): ほとんどのチームベースのエスポートでは、音声通信はチームの効率性とシナジーにおいて顕著である。
実際、公式試合で優れたパフォーマンスを発揮しようとすると、チームのスキル面だけでなく、チームの効果的な音声コミュニケーションも果たすことが観察されている。
NLP(Natural Language Processing)に関するLLM(Large Language Models)ツール(Vaswani et al )が最近出現し、音声通信の有効性を改善するための理解を深めるため、それらを適用しようと決めた。
本稿では,レジェンド・エスポート連盟のプリズムを通じて研究を行った。
しかしながら、主要な概念とアイデアは、他のチーム関連のエスポートにも容易に適用できます。
関連論文リスト
- Game-MUG: Multimodal Oriented Game Situation Understanding and Commentary Generation Dataset [8.837048597513059]
本稿では,新しいマルチモーダルゲーム状況理解とオーディエンスによるコメント生成データセットであるGAME-MUGを紹介する。
我々のデータセットは、YouTubeとTwitchの2020-2022 LOLゲームライブストリームから収集され、テキスト、オーディオ、時系列イベントログを含むマルチモーダルEスポーツゲーム情報を含んでいる。
また,ゲーム状況とオーディエンス会話理解を網羅して,新たなオーディエンス会話追加コメントデータセットを提案する。
論文 参考訳(メタデータ) (2024-04-30T00:39:26Z) - GOMA: Proactive Embodied Cooperative Communication via Goal-Oriented Mental Alignment [72.96949760114575]
我々は、ゴール指向メンタルアライメント(GOMA)という新しい協調コミュニケーションフレームワークを提案する。
GOMAは、目標に関連のあるエージェントの精神状態のミスアライメントを最小限に抑える計画問題として、言語コミュニケーションを定式化している。
我々は,Overcooked(マルチプレイヤーゲーム)とVirtualHome(家庭用シミュレータ)の2つの挑戦環境において,強いベースラインに対するアプローチを評価する。
論文 参考訳(メタデータ) (2024-03-17T03:52:52Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
大規模言語モデル(LLM)は、流動的で一貫性があり多様な応答を生成する。
しかし、それらは重要な能力、コミュニケーションスキルを欠いている。
本稿は,内的モノローグによるLLMのコミュニケーション能力向上を目的としている。
実験の結果,提案したCSIM戦略はバックボーンモデルを改善し,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-11-13T16:19:42Z) - Emergent Communication: Generalization and Overfitting in Lewis Games [53.35045559317384]
ルイスシグナリングゲーム(Lewis signaling game)は、言語の出現をシミュレートする単純なコミュニケーションゲームの一種である。
これらのゲームでは、2人のエージェントが協調的なタスクを解決するために通信プロトコルに合意しなければなりません。
これまでの研究によると、強化学習でこのゲームをプレイするように訓練されたエージェントは、望ましくない性質を示す言語を開発する傾向がある。
論文 参考訳(メタデータ) (2022-09-30T09:50:46Z) - Individual and Collective Performance Deteriorate in a New Team: A Case
Study of CS:GO Tournaments [11.86905804972623]
本研究の目的は,eスポーツトーナメントにおけるチーム変更が個人的,集団的パフォーマンスに与える影響に答えることである。
人気1人シューティングゲームのプロトーナメントのデータを収集した。
選手が新しいチームに転向した後、個人と集団のパフォーマンスが低下し、徐々に回復した。
論文 参考訳(メタデータ) (2022-05-19T16:54:49Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
我々は、数ショット$textit language coordinate$のタスクについて研究する。
リードエージェントは、言語能力の異なるエージェントの$textitpopulation$と調整する必要があります。
これは、人間のコミュニケーションの重要な構成要素であるパートナーの信念をモデル化する能力を必要とする。
論文 参考訳(メタデータ) (2021-07-12T19:26:11Z) - Coach-Player Multi-Agent Reinforcement Learning for Dynamic Team
Composition [88.26752130107259]
現実世界のマルチエージェントシステムでは、異なる能力を持つエージェントがチーム全体の目標を変更することなく参加または離脱する可能性がある。
この問題に取り組むコーチ・プレイヤー・フレームワーク「COPA」を提案します。
1)コーチと選手の両方の注意メカニズムを採用し、2)学習を正規化するための変動目標を提案し、3)コーチが選手とのコミュニケーションのタイミングを決定するための適応的なコミュニケーション方法を設計する。
論文 参考訳(メタデータ) (2021-05-18T17:27:37Z) - Analyzing Team Performance with Embeddings from Multiparty Dialogues [1.8275108630751844]
本稿では,多人数対話から学習した組込みによるチームパフォーマンス予測の問題について検討する。
構文的訓練とは異なり、対話行為と感情埋め込みは、初期の段階でもチームのパフォーマンスを分類するのに有効である。
論文 参考訳(メタデータ) (2021-01-23T05:18:12Z) - VoiceCoach: Interactive Evidence-based Training for Voice Modulation
Skills in Public Speaking [55.366941476863644]
ピッチ,ボリューム,速度などの音声特性の変調は,公的な発話を成功させる上で極めて重要である。
音声変調スキルの効果的な訓練を容易にする対話型エビデンスに基づくアプローチであるVoiceCoachを提案する。
論文 参考訳(メタデータ) (2020-01-22T04:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。