PDDLFuse: A Tool for Generating Diverse Planning Domains
- URL: http://arxiv.org/abs/2411.19886v1
- Date: Fri, 29 Nov 2024 17:52:39 GMT
- Title: PDDLFuse: A Tool for Generating Diverse Planning Domains
- Authors: Vedant Khandelwal, Amit Sheth, Forest Agostinelli,
- Abstract summary: PDDLFuse is designed to generate new, diverse planning domains that can be used to validate new planners or test foundational planning models.
We have developed methods to adjust the domain generators parameters to modulate the difficulty of the domains it generates.
Initial tests indicate that PDDLFuse efficiently creates intricate and varied domains, representing a significant advancement over traditional domain generation methods.
- Score: 12.990207889359402
- License:
- Abstract: Various real-world challenges require planning algorithms that can adapt to a broad range of domains. Traditionally, the creation of planning domains has relied heavily on human implementation, which limits the scale and diversity of available domains. While recent advancements have leveraged generative AI technologies such as large language models (LLMs) for domain creation, these efforts have predominantly focused on translating existing domains from natural language descriptions rather than generating novel ones. In contrast, the concept of domain randomization, which has been highly effective in reinforcement learning, enhances performance and generalizability by training on a diverse array of randomized new domains. Inspired by this success, our tool, PDDLFuse, aims to bridge this gap in Planning Domain Definition Language (PDDL). PDDLFuse is designed to generate new, diverse planning domains that can be used to validate new planners or test foundational planning models. We have developed methods to adjust the domain generators parameters to modulate the difficulty of the domains it generates. This adaptability is crucial as existing domain-independent planners often struggle with more complex problems. Initial tests indicate that PDDLFuse efficiently creates intricate and varied domains, representing a significant advancement over traditional domain generation methods and making a contribution towards planning research.
Related papers
- LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore? [87.71321254733384]
Large language models (LLMs) can generate planning approaches tailored to specific planning problems.
LLMs can achieve state-of-the-art performance on some standard IPC domains.
We discuss whether these results signify a paradigm shift and how they can complement existing planning approaches.
arXiv Detail & Related papers (2025-01-30T22:21:12Z) - Schema Augmentation for Zero-Shot Domain Adaptation in Dialogue State Tracking [16.67185296899117]
Current large language model approaches for zero-shot domain adaptation rely on prompting to introduce knowledge pertaining to the target domains.
In this work, we devise a novel data augmentation approach, Augmentation, that improves the zero-shot domain adaptation of language models through fine-tuning.
Experiments on MultiWOZ and SpokenWOZ showed that the proposed approach resulted in a substantial improvement over the baseline.
arXiv Detail & Related papers (2024-10-31T18:57:59Z) - DomainVerse: A Benchmark Towards Real-World Distribution Shifts For
Tuning-Free Adaptive Domain Generalization [27.099706316752254]
We establish a novel dataset DomainVerse for Adaptive Domain Generalization (ADG)
Benefiting from the introduced hierarchical definition of domain shifts, DomainVerse consists of about 0.5 million images from 390 fine-grained realistic domains.
We propose two methods called Domain CLIP and Domain++ CLIP for tuning-free adaptive domain generalization.
arXiv Detail & Related papers (2024-03-05T07:10:25Z) - Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.
This setting neglects the more practical scenario where training data are collected from multiple sources.
This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains.
arXiv Detail & Related papers (2023-11-21T13:12:21Z) - DEJA VU: Continual Model Generalization For Unseen Domains [38.700426892171336]
In real-world applications, deep learning models often run in non-stationary environments where the target data distribution continually shifts over time.
We propose RaTP, a framework that focuses on improving models' target domain generalization (TDG) capability, while also achieving effective target domain adaptation (TDA) capability right after training on certain domains and forgetting alleviation (FA) capability on past domains.
RaTP significantly outperforms state-of-the-art works from Continual DA, Source-Free DA, Test-Time/Online DA, Single DG, Multiple DG and Unified DA&DG in TDG, and achieves comparable TDA
arXiv Detail & Related papers (2023-01-25T05:56:53Z) - DILBERT: Customized Pre-Training for Domain Adaptation withCategory
Shift, with an Application to Aspect Extraction [25.075552473110676]
A generic approach towards the pre-training procedure can naturally be sub-optimal in some cases.
This paper presents a new fine-tuning scheme for BERT, which aims to address the above challenges.
We name this scheme DILBERT: Domain Invariant Learning with BERT, and customize it for aspect extraction in the unsupervised domain adaptation setting.
arXiv Detail & Related papers (2021-09-01T18:49:44Z) - Domain Consistency Regularization for Unsupervised Multi-source Domain
Adaptive Classification [57.92800886719651]
Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years.
domain shift in MUDA exists not only between the source and target domains but also among multiple source domains.
We propose an end-to-end trainable network that exploits domain Consistency Regularization for unsupervised Multi-source domain Adaptive classification.
arXiv Detail & Related papers (2021-06-16T07:29:27Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Unsupervised Domain Adaptation with Progressive Domain Augmentation [34.887690018011675]
We propose a novel unsupervised domain adaptation method based on progressive domain augmentation.
The proposed method generates virtual intermediate domains via domain, progressively augments the source domain and bridges the source-target domain divergence.
We conduct experiments on multiple domain adaptation tasks and the results shows the proposed method achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-04-03T18:45:39Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.