論文の概要: Improving Medical Diagnostics with Vision-Language Models: Convex Hull-Based Uncertainty Analysis
- arxiv url: http://arxiv.org/abs/2412.00056v1
- Date: Sun, 24 Nov 2024 17:49:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 08:47:23.406839
- Title: Improving Medical Diagnostics with Vision-Language Models: Convex Hull-Based Uncertainty Analysis
- Title(参考訳): ビジョンランゲージモデルによる医療診断の改善:凸ハルに基づく不確実性解析
- Authors: Ferhat Ozgur Catak, Murat Kuzlu, Taylor Patrick,
- Abstract要約: 本稿では,視覚質問応答(VQA)のための医療アプリケーションにおける凸包アプローチを用いて,視覚言語モデル(VLM)の不確実性を評価する新しいアプローチを提案する。
その結果,LLM-CXR VLMは高温条件下で高い不確実性を示した。
- 参考スコア(独自算出の注目度): 0.3277163122167434
- License:
- Abstract: In recent years, vision-language models (VLMs) have been applied to various fields, including healthcare, education, finance, and manufacturing, with remarkable performance. However, concerns remain regarding VLMs' consistency and uncertainty, particularly in critical applications such as healthcare, which demand a high level of trust and reliability. This paper proposes a novel approach to evaluate uncertainty in VLMs' responses using a convex hull approach on a healthcare application for Visual Question Answering (VQA). LLM-CXR model is selected as the medical VLM utilized to generate responses for a given prompt at different temperature settings, i.e., 0.001, 0.25, 0.50, 0.75, and 1.00. According to the results, the LLM-CXR VLM shows a high uncertainty at higher temperature settings. Experimental outcomes emphasize the importance of uncertainty in VLMs' responses, especially in healthcare applications.
- Abstract(参考訳): 近年、医療、教育、金融、製造業など様々な分野に視覚言語モデル(VLM)が適用されており、その性能は顕著である。
しかしながら、VLMの一貫性と不確実性に関する懸念は、特に高いレベルの信頼と信頼性を必要とする医療のような重要な応用においてなお残っている。
本稿では,VQA (Visual Question Answering, VQA) のための医療アプリケーションにおいて, 凸殻アプローチを用いてVLMの応答の不確実性を評価する新しい手法を提案する。
LLM-CXRモデルは、異なる温度設定、すなわち0.001、0.25、0.50、0.75、1.00で所定のプロンプトに対する応答を生成するために使用される医用VLMとして選択される。
その結果,LLM-CXR VLMは高温条件下で高い不確実性を示した。
実験結果は、特に医療応用において、VLMの反応における不確実性の重要性を強調している。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Uncertainty Quantification for Clinical Outcome Predictions with (Large) Language Models [10.895429855778747]
ホワイトボックスおよびブラックボックス設定におけるEMHタスクに対するLMの不確実性定量化について検討する。
EHRにおけるマルチタスクとアンサンブル手法を用いることで,モデル不確実性を効果的に低減できることを示す。
6,000名以上の患者から得られた縦断的臨床データを10種類の臨床予測タスクで検証した。
論文 参考訳(メタデータ) (2024-11-05T20:20:15Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
臨床能力の5つの重要な側面にまたがって,大規模言語モデル(LLM)を評価するフレームワークであるMEDICを紹介する。
医療質問応答,安全性,要約,メモ生成,その他のタスクにおいて,MDDICを用いてLCMを評価する。
その結果, モデルサイズ, ベースライン, 医療用微調整モデル間の性能差が示され, 特定のモデル強度を必要とするアプリケーションに対して, モデル選択に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2024-09-11T14:44:51Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
大規模言語モデル(LLM)は意思決定に広く使用されているが、特に医療などの重要なタスクにおける信頼性は十分に確立されていない。
本稿では,LSMが生成する応答の不確実性が,入力プロンプトで提供される情報とどのように関連しているかを検討する。
本稿では,LLMが応答を生成する方法を説明し,プロンプトと応答の不確実性の関係を理解するためのプロンプト応答の概念モデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T11:19:58Z) - Evaluating the Quality of Hallucination Benchmarks for Large Vision-Language Models [67.89204055004028]
LVLM(Large Vision-Language Models)は幻覚に悩まされている。
以前の研究では、さまざまなタイプのタスクと評価指標を特徴とする一連のベンチマークが提案されている。
本稿では,既存の幻覚ベンチマークの信頼性と妥当性を評価するために,幻覚ベンチマーク品質測定フレームワーク(HQM)を提案する。
論文 参考訳(メタデータ) (2024-06-24T20:08:07Z) - CARES: A Comprehensive Benchmark of Trustworthiness in Medical Vision Language Models [92.04812189642418]
我々はCARESを紹介し,医療領域全体での医療LVLMの信頼性を評価することを目的とする。
我々は,Med-LVLMの信頼性を,信頼性,公正性,安全性,プライバシ,堅牢性,5次元にわたって評価する。
論文 参考訳(メタデータ) (2024-06-10T04:07:09Z) - MediQ: Question-Asking LLMs and a Benchmark for Reliable Interactive Clinical Reasoning [36.400896909161006]
我々は積極的に質問を行い、より多くの情報を集め、確実に応答するシステムを開発する。
LLMの問合せ能力を評価するためのベンチマーク - MediQ を導入する。
論文 参考訳(メタデータ) (2024-06-03T01:32:52Z) - Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA [24.10436440624249]
大規模マルチモーダルモデル(LMM)は医療用視覚質問応答(Med-VQA)において顕著な進歩を示した
本研究は, 簡易な探索評価を行う場合, 医学的診断問題に対するランダムな推測よりも, 最先端のモデルの方が悪いことを明らかにした。
論文 参考訳(メタデータ) (2024-05-30T18:56:01Z) - Uncertainty-Aware Evaluation for Vision-Language Models [0.0]
現在の評価手法は重要な要素である不確実性を見落としている。
精度の高いモデルも高い不確実性を持つ可能性があることを示す。
また, 実験結果から, モデルの不確かさと言語モデル部分との相関が明らかとなった。
論文 参考訳(メタデータ) (2024-02-22T10:04:17Z) - Word-Sequence Entropy: Towards Uncertainty Estimation in Free-Form Medical Question Answering Applications and Beyond [52.246494389096654]
本稿ではワードシーケンスエントロピー(WSE)を紹介し,単語レベルとシーケンスレベルの不確実性を校正する手法を提案する。
We compare WSE with six baseline method on five free-form medical QA datasets, using 7 popular large language model (LLMs)。
論文 参考訳(メタデータ) (2024-02-22T03:46:08Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。