Road User Classification from High-Frequency GNSS Data Using Distributed Edge Intelligence
- URL: http://arxiv.org/abs/2412.00132v1
- Date: Thu, 28 Nov 2024 14:51:02 GMT
- Title: Road User Classification from High-Frequency GNSS Data Using Distributed Edge Intelligence
- Authors: Lennart Köpper, Thomas Wieland,
- Abstract summary: Real-world traffic involves diverse road users, ranging from pedestrians to heavy trucks.
Traditional approaches often rely on intrusive and/or expensive external sensors.
This work aims to investigate an unintrusive and cost-effective alternative for road user classification by using high-frequency (1-2 Hz) positional sequences.
- Score: 0.0
- License:
- Abstract: Real-world traffic involves diverse road users, ranging from pedestrians to heavy trucks, necessitating effective road user classification for various applications within Intelligent Transport Systems (ITS). Traditional approaches often rely on intrusive and/or expensive external hardware sensors. These systems typically have limited spatial coverage. In response to these limitations, this work aims to investigate an unintrusive and cost-effective alternative for road user classification by using high-frequency (1-2 Hz) positional sequences. A cutting-edge solution could involve leveraging positioning data from 5G networks. However, this feature is currently only proposed in the 3GPP standard and has not yet been implemented for outdoor applications by 5G equipment vendors. Therefore, our approach relies on positional data, that is recorded under real-world conditions using Global Navigation Satellite Systems (GNSS) and processed on distributed edge devices. As a start-ing point, four types of road users are distinguished: pedestri-ans, cyclists, motorcycles, and passenger cars. While earlier approaches used classical statistical methods, we propose Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) as the preferred classification method, as they repre-sent state-of-the-art in processing sequential data. An RNN architecture for road user classification, based on selected motion characteristics derived from raw positional sequences is presented and the influence of sequence length on classifica-tion quality is examined. The results of the work show that RNNs are capable of efficiently classifying road users on dis-tributed devices, and can particularly differentiate between types of motorized vehicles, based on two- to four-minute se-quences.
Related papers
- Leveraging GNSS and Onboard Visual Data from Consumer Vehicles for Robust Road Network Estimation [18.236615392921273]
This paper addresses the challenge of road graph construction for autonomous vehicles.
We propose using global navigation satellite system (GNSS) traces and basic image data acquired from these standard sensors in consumer vehicles.
We exploit the spatial information in the data by framing the problem as a road centerline semantic segmentation task using a convolutional neural network.
arXiv Detail & Related papers (2024-08-03T02:57:37Z) - Autoregressive Attention Neural Networks for Non-Line-of-Sight User
Tracking with Dynamic Metasurface Antennas [20.416982017315014]
We present a two-stage machine-learning-based approach for user tracking, specifically designed for non-LoS multipath settings.
A newly proposed attention-based Neural Network (NN) is first trained to map noisy channel responses to potential user positions.
As a second stage, the NN's predictions for the past user positions are passed through a learnable autoregressive model.
arXiv Detail & Related papers (2023-10-30T17:38:16Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Automated classification of pre-defined movement patterns: A comparison
between GNSS and UWB technology [55.41644538483948]
Real-time location systems (RTLS) allow for collecting data from human movement patterns.
The current study aims to design and evaluate an automated framework to classify human movement patterns in small areas.
arXiv Detail & Related papers (2023-03-10T14:46:42Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - The Devil Is in the Details: An Efficient Convolutional Neural Network
for Transport Mode Detection [3.008051369744002]
Transport mode detection is a classification problem aiming to design an algorithm that can infer the transport mode of a user given multimodal signals.
We show that a small, optimized model can perform as well as a current deep model.
arXiv Detail & Related papers (2021-09-16T08:05:47Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Road Accident Proneness Indicator Based On Time, Weather And Location
Specificity Using Graph Neural Networks [0.0]
A total of 14 features were compiled based on Time, Weather, and Location specificity along a road.
Using the locations of accident warnings, a Safety Index was developed to quantify how accident-prone a particular road is.
We implement a novel approach to predict the Safety Index of a road-based on its TWL specificity by using a Graph Neural Network architecture.
arXiv Detail & Related papers (2020-10-24T18:45:15Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.