論文の概要: DLaVA: Document Language and Vision Assistant for Answer Localization with Enhanced Interpretability and Trustworthiness
- arxiv url: http://arxiv.org/abs/2412.00151v1
- Date: Fri, 29 Nov 2024 06:17:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:09.418137
- Title: DLaVA: Document Language and Vision Assistant for Answer Localization with Enhanced Interpretability and Trustworthiness
- Title(参考訳): DLaVA: 解釈可能性と信頼性を向上したアンサーローカライゼーションのための文書言語と視覚アシスタント
- Authors: Ahmad Mohammadshirazi, Pinaki Prasad Guha Neogi, Ser-Nam Lim, Rajiv Ramnath,
- Abstract要約: 本稿では,文書VQAの応答ローカライゼーション機能を備えたMLLMを改良する新しい手法であるDLaVAを紹介する。
我々はOCRに依存しないアーキテクチャとOCRに依存しないアーキテクチャの両方を提示する。
我々の貢献は、空間的アノテートされた視覚コンテンツに応答を接地することで、解釈可能性と信頼性を高めることである。
- 参考スコア(独自算出の注目度): 34.170341753045776
- License:
- Abstract: Document Visual Question Answering (VQA) requires models to interpret textual information within complex visual layouts and comprehend spatial relationships to answer questions based on document images. Existing approaches often lack interpretability and fail to precisely localize answers within the document, hindering users' ability to verify responses and understand the reasoning process. Moreover, standard metrics like Average Normalized Levenshtein Similarity (ANLS) focus on text accuracy but overlook spatial correctness. We introduce DLaVA, a novel method that enhances Multimodal Large Language Models (MLLMs) with answer localization capabilities for Document VQA. Our approach integrates image annotation directly into the MLLM pipeline, improving interpretability by enabling users to trace the model's reasoning. We present both OCR-dependent and OCR-free architectures, with the OCR-free approach eliminating the need for separate text recognition components, thus reducing complexity. To the best of our knowledge, DLaVA is the first approach to introduce answer localization within multimodal QA, marking a significant step forward in enhancing user trust and reducing the risk of AI hallucinations. Our contributions include enhancing interpretability and reliability by grounding responses in spatially annotated visual content, introducing answer localization in MLLMs, proposing a streamlined pipeline that combines an MLLM with a text detection module, and conducting comprehensive evaluations using both textual and spatial accuracy metrics, including Intersection over Union (IoU). Experimental results on standard datasets demonstrate that DLaVA achieves SOTA performance, significantly enhancing model transparency and reliability. Our approach sets a new benchmark for Document VQA, highlighting the critical importance of precise answer localization and model interpretability.
- Abstract(参考訳): VQA (Document Visual Question Answering) は、複雑なビジュアルレイアウト内でテキスト情報を解釈し、文書イメージに基づいて質問に答えるために空間的関係を理解するモデルを必要とする。
既存のアプローチは解釈可能性に欠けることが多く、文書内での回答の正確なローカライズに失敗し、ユーザの応答の検証と推論プロセスの理解を妨げる。
さらに、平均正規化Levenshtein類似度(ANLS)のような標準メトリクスは、テキストの正確さに重点を置いているが、空間的正しさを見落としている。
本稿では,文書VQAの応答ローカライズ機能を備えたMLLM(Multimodal Large Language Models)の拡張手法であるDLaVAを紹介する。
提案手法では,MLLMパイプラインに直接画像アノテーションを組み込むことで,ユーザがモデルの推論を追跡できるようにすることで,解釈性を向上させる。
我々は、OCRに依存しないアーキテクチャとOCRに依存しないアーキテクチャの両方を提示し、OCRに依存しないアプローチにより、テキスト認識コンポーネントを分離する必要がなくなり、複雑さが軽減される。
我々の知る限りでは、DLaVAはマルチモーダルQA内の回答ローカライゼーションを導入する最初のアプローチであり、ユーザの信頼を高め、AI幻覚のリスクを低減するための大きな一歩である。
コントリビューションには、空間的アノテートされた視覚コンテンツにおける応答の基盤化、MLLMの応答ローカライゼーションの導入、MLLMとテキスト検出モジュールを組み合わせた合理化パイプラインの提案、OoU(Intersection over Union)を含むテキストおよび空間的精度の指標を用いた総合的な評価の実施などが含まれる。
標準データセットに対する実験結果から、DLaVAはSOTA性能を実現し、モデルの透明性と信頼性を大幅に向上することが示された。
提案手法は文書VQAの新しいベンチマークを設定し,正確な回答の局所化とモデル解釈可能性の重要性を強調した。
関連論文リスト
- Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
大規模言語モデル(LLM)の性能向上を目的としたLong Question Coreference Adaptation (LQCA) 手法を提案する。
このフレームワークは、長いコンテキストに合わせて調整されたコア参照解決に焦点を当てており、モデルが参照を効果的に識別し、管理することができる。
このフレームワークはLLMの扱いやすいパーティションを提供し、理解を深める。
論文 参考訳(メタデータ) (2024-10-02T15:39:55Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented system を提案する。
VERAは、外部検索が必要なかどうかを最初にチェックし、検索したコンテキストの関連性と冗長性を評価し、非必要情報の除去のために精査する評価器-既存のLCMを使用している。
論文 参考訳(メタデータ) (2024-09-18T16:10:47Z) - HiRes-LLaVA: Restoring Fragmentation Input in High-Resolution Large Vision-Language Models [96.76995840807615]
HiRes-LLaVAは、元の文脈情報や幾何学的情報を変更することなく、高解像度入力のサイズを処理するように設計された新しいフレームワークである。
HiRes-LLaVAは、2つの革新的なコンポーネントで構成されている: (i)スライスしたパッチを元の形式に再構築し、ダウンアップサンプリング層と畳み込み層を通じてグローバルとローカルの両方の特徴を効率的に抽出するSliceRestoreアダプタ、(ii)自分自身に基づいてビジョントークンを圧縮するセルフマイニングサンプリング。
論文 参考訳(メタデータ) (2024-07-11T17:42:17Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - What Do VLMs NOTICE? A Mechanistic Interpretability Pipeline for Gaussian-Noise-free Text-Image Corruption and Evaluation [16.033361754660316]
視覚言語モデル(VLM)における可読性評価パイプライン
SVO-Probes、MIT-States、Facial Expression Recognitionデータセットに関する実験により、VLM意思決定における重要な洞察が明らかになった。
この研究は、より透明で解釈可能なマルチモーダルシステムへの道を開いた。
論文 参考訳(メタデータ) (2024-06-24T05:13:19Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
大規模言語モデル(LLM)の隠れ状態表現を利用した文脈質問応答における帰属手法を提案する。
提案手法は,より詳細な属性を提供し,生成した回答の質を保ちながら,広範囲なモデル再訓練および検索モデルオーバーヘッドの必要性を回避している。
本稿では,LLM世代に対するトークンレベルのアノテーションを文脈質問応答設定に有する属性データセットであるVerifiability-granularを提案する。
論文 参考訳(メタデータ) (2024-05-28T09:12:44Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - Image2Sentence based Asymmetrical Zero-shot Composed Image Retrieval [92.13664084464514]
合成画像検索(CIR)の課題は,検索画像とユーザの意図を記述したテキストに基づいて画像を取得することである。
既存の手法は、CIRタスクにおける高度な大規模視覚言語(VL)モデルにおいて大きな進歩を遂げているが、それらは一般的に、モデルトレーニングのためのラベル付き三重項の欠如とリソース制限された環境への展開の困難という2つの大きな問題に悩まされている。
本稿では、VLモデルを利用して合成学習のためのラベルなし画像のみに依存する画像2Sentenceに基づく非対称ゼロショット合成画像検索(ISA)を提案する。
論文 参考訳(メタデータ) (2024-03-03T07:58:03Z) - Zero-Shot Video Moment Retrieval from Frozen Vision-Language Models [58.17315970207874]
モーメント・テキストアライメントを容易にするため、任意のVLMから一般化可能なビジュアル・テクスチャの事前適応のためのゼロショット手法を提案する。
3つのVMRベンチマークデータセットで実施された実験は、ゼロショットアルゴリズムの顕著なパフォーマンス上の利点を示している。
論文 参考訳(メタデータ) (2023-09-01T13:06:50Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
情報検索は、オープンドメイン質問応答(QA)など、多くのダウンストリームタスクにとって重要な要素である。
本稿では、エンティティ/イベントリンクモデルとクエリ分解モデルを用いて、クエリの異なる情報単位により正確にフォーカスする情報検索パイプラインを提案する。
より解釈可能で信頼性が高いが,提案したパイプラインは,5つのIRおよびQAベンチマークにおける通過カバレッジと記述精度を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-09T07:47:17Z) - External Reasoning: Towards Multi-Large-Language-Models Interchangeable
Assistance with Human Feedback [0.0]
本稿では、外部リポジトリからの知識の選択的統合により、LLM(Large Language Models)を拡張できることを提案する。
このアプローチの中心は、複数のLLMインターチェンジ支援に基づくTextbf外部推論のためのタイレッドポリシーの確立である。
結果は、Crefcomparisonにおける最先端のパフォーマンスを示し、ChatPDF.comを含む既存のソリューションを上回った。
論文 参考訳(メタデータ) (2023-07-05T17:05:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。