論文の概要: Train Once for All: A Transitional Approach for Efficient Aspect Sentiment Triplet Extraction
- arxiv url: http://arxiv.org/abs/2412.00208v1
- Date: Fri, 29 Nov 2024 19:10:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 21:11:21.624826
- Title: Train Once for All: A Transitional Approach for Efficient Aspect Sentiment Triplet Extraction
- Title(参考訳): 全列車:効率的なアスペクト・センチメント・トリプレット抽出のための過渡的アプローチ
- Authors: Xinmeng Hou, Lingyue Fu, Chenhao Meng, Hai Hu,
- Abstract要約: 本稿では,トークンレベルのバイアスを緩和し,位置認識のアスペクト-オピニオン関係を捉えるトランジションベースのパイプラインを提案する。
融合データセットとコントラスト学習最適化を用いることで、ロバストなアクションパターンを学習し、個別のサブタスクを共同で最適化することができる。
その結果,本モデルがASTEタスクとAOPEタスクの両方で最高の性能を達成し,F1尺度の少なくとも6.98%の精度で最先端の手法よりも優れた結果が得られた。
- 参考スコア(独自算出の注目度): 3.273286522350748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aspect-Opinion Pair Extraction (AOPE) and Aspect Sentiment Triplet Extraction (ASTE) have gained significant attention in natural language processing. However, most existing methods are a pipelined framework, which extracts aspects/opinions and identifies their relations separately, leading to a drawback of error propagation and high time complexity. Towards this problem, we propose a transition-based pipeline to mitigate token-level bias and capture position-aware aspect-opinion relations. With the use of a fused dataset and contrastive learning optimization, our model learns robust action patterns and can optimize separate subtasks jointly, often with linear-time complexity. The results show that our model achieves the best performance on both the ASTE and AOPE tasks, outperforming the state-of-the-art methods by at least 6.98\% in the F1 measure. The code is available at https://github.com/Paparare/trans_aste.
- Abstract(参考訳): AOPE(Aspect-Opinion Pair extract)とASTE(Aspect Sentiment Triplet extract)は自然言語処理において大きな注目を集めている。
しかし、既存のほとんどのメソッドはパイプライン化されたフレームワークであり、アスペクト/オピニオンを抽出し、それらの関係を別々に識別する。
そこで本稿では,トークンレベルのバイアスを緩和し,位置認識型アスペクト-オピニオン関係を捕捉するトランジションベースのパイプラインを提案する。
融合したデータセットと対照的な学習最適化を用いることで、我々のモデルは堅牢なアクションパターンを学習し、しばしば線形時間複雑性とともに、個別のサブタスクを共同で最適化することができる。
その結果,本モデルがASTEタスクとAOPEタスクの両方で最高の性能を達成し,F1尺度の少なくとも6.98倍の精度で最先端の手法よりも優れた結果が得られた。
コードはhttps://github.com/Paparare/trans_aste.comで公開されている。
関連論文リスト
- Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
高度な埋め込みモデルは、通常、大規模マルチタスクデータと複数のタスクをまたいだ共同トレーニングを用いて開発される。
これらの課題を克服するために、独立に訓練されたモデルを組み合わせて勾配の衝突を緩和し、データ分散のバランスをとるモデルマージングについて検討する。
本稿では,勾配降下を用いたタスクベクトル空間内の最適モデル組合せを効率的に探索する新たな手法であるSelf Positioningを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:39:21Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Sample Enrichment via Temporary Operations on Subsequences for Sequential Recommendation [15.718287580146272]
本稿では,SETO(Subsequences on Subsequences)を用いたサンプルエンリッチメントという,シーケンシャルレコメンデーションのための新しいモデルに依存しない高汎用フレームワークを提案する。
複数の実世界のデータセットにまたがる、複数の代表的および最先端のシーケンシャルレコメンデーションモデルに対するSETOの有効性と汎用性を強調します。
論文 参考訳(メタデータ) (2024-07-25T06:22:08Z) - Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems [17.10762463903638]
我々は人的評価を近似するために評価モデルを訓練し、高い合意を得る。
そこで本研究では,アノテートデータの一部を用いて評価モデルを訓練する弱強監督手法を提案する。
論文 参考訳(メタデータ) (2024-06-26T10:48:14Z) - PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for End-to-end Document Pair Extraction [28.205723817300576]
ドキュメントペア抽出は、キーエンティティとバリューエンティティの識別と、視覚的に豊富なドキュメントからの関連性の実現を目的としている。
既存のほとんどのメソッドは、セマンティックエンティティ認識(SER)と関係抽出(RE)の2つのタスクに分割している。
本稿では,統一パイプラインで文書ペア抽出を行う新しいフレームワークであるPEneoを紹介する。
論文 参考訳(メタデータ) (2024-01-07T12:48:07Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
事前訓練されたモデルの任意のペアリングに対して、一方のモデルは他方では利用できない重要なデータコンテキストを抽出する。
このような「補的」な知識を,性能劣化を伴わずに,あるモデルから別のモデルへ伝達できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-10-26T17:59:46Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
ポイント・プロンプト・トレーニング(Point Prompt Training)は、3D表現学習の文脈におけるマルチデータセットのシナジスティック学習のための新しいフレームワークである。
シナジスティック学習に関連する負の移動を克服し、一般化可能な表現を生成する。
教師付きマルチデータセットトレーニングを備えた1つの重み付きモデルを用いて、各データセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-08-18T17:59:57Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - Mutually Guided Few-shot Learning for Relational Triple Extraction [10.539566491939844]
三重抽出(MG-FTE)のための相互指導型Few-shot学習フレームワーク
本手法は,関係を分類するエンティティ誘導型リレーショナルデコーダと,エンティティを抽出するプロトデコーダとから構成される。
FewRel 1.0(単一ドメイン)では12.6F1スコア、FewRel 2.0(クロスドメイン)では20.5F1スコアで、多くの最先端手法よりも優れています。
論文 参考訳(メタデータ) (2023-06-23T06:15:54Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQは、マルチタスク学習問題とエンティティペアの分布を回避する、シーングラフ生成の新しい定式化である。
我々は,DETRをベースとしたエンコーダ-デコーダ条件付きクエリを用いて,エンティティラベル空間を大幅に削減する。
実験結果から、TraCQは既存のシングルステージシーングラフ生成法よりも優れており、Visual Genomeデータセットの最先端の2段階メソッドを多く上回っていることがわかった。
論文 参考訳(メタデータ) (2023-06-09T06:02:01Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
ディープラーニングモデルは、稀なシーンやオブジェクトを持つビデオに適用すると、パフォーマンスが悪くなります。
この問題にはアルゴリズムとデータセットの2つの異なる角度から対処する。
偏りのある表現は、他のデータセットやタスクに転送するとより一般化できることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:30:35Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
同時に、複数のアップストリームとダウンストリームのタスクで1つのモデルをトレーニングする。
共ファインタニングは、同じデータ量を使用する場合、従来のトランスファーラーニングよりも優れていることを示す。
さらに、複数のアップストリームデータセットへのアプローチを簡単に拡張して、パフォーマンスをさらに向上する方法も示しています。
論文 参考訳(メタデータ) (2022-07-08T10:25:47Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
統合エンティティと関係抽出は自然言語処理と知識グラフ構築において不可欠な課題である。
そこで我々は, 結合抽出を細粒度三重分類問題として用いた, OneRel という新しい結合実体と関係抽出モデルを提案する。
論文 参考訳(メタデータ) (2022-03-10T15:09:59Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Learning Iterative Robust Transformation Synchronization [71.73273007900717]
グラフニューラルネットワーク(GNN)を用いて変換同期を学習することを提案する。
本研究では、ロバストな損失関数のハンドクラフトを回避するとともに、グラフニューラルネットワーク(GNN)を用いて変換同期を学習することを提案する。
論文 参考訳(メタデータ) (2021-11-01T07:03:14Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。