AutoPQ: Automating Quantile estimation from Point forecasts in the context of sustainability
- URL: http://arxiv.org/abs/2412.00419v1
- Date: Sat, 30 Nov 2024 10:13:57 GMT
- Title: AutoPQ: Automating Quantile estimation from Point forecasts in the context of sustainability
- Authors: Stefan Meisenbacher, Kaleb Phipps, Oskar Taubert, Marie Weiel, Markus Götz, Ralf Mikut, Veit Hagenmeyer,
- Abstract summary: AutoPQ is a novel method designed to automate and optimize probabilistic forecasting for smart grid applications.
It generates quantile forecasts from an existing point forecast by using a conditional Invertible Neural Network (cINN)
- Score: 0.7249177582307034
- License:
- Abstract: Optimizing smart grid operations relies on critical decision-making informed by uncertainty quantification, making probabilistic forecasting a vital tool. Designing such forecasting models involves three key challenges: accurate and unbiased uncertainty quantification, workload reduction for data scientists during the design process, and limitation of the environmental impact of model training. In order to address these challenges, we introduce AutoPQ, a novel method designed to automate and optimize probabilistic forecasting for smart grid applications. AutoPQ enhances forecast uncertainty quantification by generating quantile forecasts from an existing point forecast by using a conditional Invertible Neural Network (cINN). AutoPQ also automates the selection of the underlying point forecasting method and the optimization of hyperparameters, ensuring that the best model and configuration is chosen for each application. For flexible adaptation to various performance needs and available computing power, AutoPQ comes with a default and an advanced configuration, making it suitable for a wide range of smart grid applications. Additionally, AutoPQ provides transparency regarding the electricity consumption required for performance improvements. We show that AutoPQ outperforms state-of-the-art probabilistic forecasting methods while effectively limiting computational effort and hence environmental impact. Additionally and in the context of sustainability, we quantify the electricity consumption required for performance improvements.
Related papers
- QGAPHEnsemble : Combining Hybrid QLSTM Network Ensemble via Adaptive Weighting for Short Term Weather Forecasting [0.0]
This research highlights the practical efficacy of employing advanced machine learning techniques.
Our model demonstrates a substantial improvement in the accuracy and reliability of meteorological predictions.
The paper highlights the importance of optimized ensemble techniques to improve the performance the given weather forecasting task.
arXiv Detail & Related papers (2025-01-18T20:18:48Z) - Uncertainty-aware Language Modeling for Selective Question Answering [107.47864420630923]
We present an automatic large language model (LLM) conversion approach that produces uncertainty-aware LLMs.
Our approach is model- and data-agnostic, is computationally-efficient, and does not rely on external models or systems.
arXiv Detail & Related papers (2023-11-26T22:47:54Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - Adaptive Probabilistic Forecasting of Electricity (Net-)Load [0.0]
Electricity load forecasting is a necessary capability for power system operators and electricity market participants.
The proliferation of local generation, demand response, and electrification of heat and transport are changing the fundamental drivers of electricity load.
We consider probabilistic rather than point forecasting; indeed, uncertainty is required to operate electricity systems efficiently and reliably.
arXiv Detail & Related papers (2023-01-24T15:56:14Z) - A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
Cloud [10.970391043991363]
We propose an end-to-end predictive meta model-based RL algorithm, aiming to optimally allocate resource to maintain a stable CPU utilization level.
Our algorithm not only ensures the predictability and accuracy of the scaling strategy, but also enables the scaling decisions to adapt to the changing workloads with high sample efficiency.
arXiv Detail & Related papers (2022-05-31T13:54:04Z) - A Reinforcement Learning Framework for PQoS in a Teleoperated Driving
Scenario [18.54699818319184]
We propose the design of a new entity, implemented at the RAN-level, that implements PQoS functionalities.
Specifically, we focus on the design of the reward function of the learning agent, able to convert estimates into appropriate countermeasures if requirements are not satisfied.
We demonstrate via ns-3 simulations that our approach achieves the best trade-off in terms of Quality of Experience (QoE) performance of end users in a teledriving-like scenario.
arXiv Detail & Related papers (2022-02-04T02:59:16Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Probabilistic Load Forecasting Based on Adaptive Online Learning [7.373617024876726]
This paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models.
We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios.
The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.
arXiv Detail & Related papers (2020-11-30T12:02:26Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.