論文の概要: On the Conditions for Domain Stability for Machine Learning: a Mathematical Approach
- arxiv url: http://arxiv.org/abs/2412.00464v1
- Date: Sat, 30 Nov 2024 12:57:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:35.055383
- Title: On the Conditions for Domain Stability for Machine Learning: a Mathematical Approach
- Title(参考訳): 機械学習における領域安定性の条件について:数学的アプローチ
- Authors: Gabriel Pedroza,
- Abstract要約: この研究は、安定性と呼ばれる機械学習モデルの特性を(再)定義する数学的アプローチを提案する。
スコープの特徴は函数の領域に依存し、そこで位相空間理論と距離空間理論を基礎として採用することができる。
- 参考スコア(独自算出の注目度): 0.9790236766474201
- License:
- Abstract: This work proposes a mathematical approach that (re)defines a property of Machine Learning models named stability and determines sufficient conditions to validate it. Machine Learning models are represented as functions, and the characteristics in scope depend upon the domain of the function, what allows us to adopt topological and metric spaces theory as a basis. Finally, this work provides some equivalences useful to prove and test stability in Machine Learning models. The results suggest that whenever stability is aligned with the notion of function smoothness, then the stability of Machine Learning models primarily depends upon certain topological, measurable properties of the classification sets within the ML model domain.
- Abstract(参考訳): この研究は、安定性と呼ばれる機械学習モデルの特性を(再)定義し、それを検証するのに十分な条件を決定する数学的アプローチを提案する。
機械学習モデルは関数として表現され、スコープの特徴は関数の領域に依存し、そこで位相空間理論と距離空間理論を基礎として採用することができる。
最後に、この研究は機械学習モデルの安定性を証明およびテストするのに有用ないくつかの等価性を提供する。
結果は、安定性が関数の滑らかさの概念に一致している場合、機械学習モデルの安定性は、MLモデル領域内の分類セットの位相的、測定可能な特性に依存することを示唆している。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Continuous Management of Machine Learning-Based Application Behavior [3.316045828362788]
機械学習モデルの非機能特性は、監視、検証、維持されなければならない。
MLベースのアプリケーションの安定な非機能動作を保証することを目的としたマルチモデルアプローチを提案する。
非機能的プロパティフェアネスに着目した実世界のシナリオで,我々のソリューションを実験的に評価した。
論文 参考訳(メタデータ) (2023-11-21T15:47:06Z) - Guaranteed Stable Quadratic Models and their applications in SINDy and
Operator Inference [9.599029891108229]
動的モデルを構築する演算子推論手法に着目する。
推論のために、適切な最適化問題を設定することによってモデルの演算子を学習することを目的とする。
本稿では,安定性の維持を図示する数値的な例をいくつか提示する。
論文 参考訳(メタデータ) (2023-08-26T09:00:31Z) - Stability Guarantees for Feature Attributions with Multiplicative
Smoothing [11.675168649032875]
我々は安定性を信頼性のある特徴帰属法の特性として分析する。
このようなモデルを実現するために,Multiplelicative Smoothing (MuS) と呼ばれる平滑化手法を開発した。
LIME や SHAP などの様々な特徴属性法による視覚モデルや言語モデル上で MuS を評価するとともに, MuS が非自明な安定性を保証する特徴属性を付与することを示す。
論文 参考訳(メタデータ) (2023-07-12T04:19:47Z) - On the Stability-Plasticity Dilemma of Class-Incremental Learning [50.863180812727244]
クラス増分学習の第一の目的は、安定性と可塑性のバランスをとることである。
本稿では,近年のクラス増分学習アルゴリズムが,安定性と塑性のトレードオフにいかに効果的かを明らかにすることを目的とする。
論文 参考訳(メタデータ) (2023-04-04T09:34:14Z) - Numerically Stable Sparse Gaussian Processes via Minimum Separation
using Cover Trees [57.67528738886731]
誘導点に基づくスケーラブルスパース近似の数値安定性について検討する。
地理空間モデリングなどの低次元タスクに対しては,これらの条件を満たす点を自動計算する手法を提案する。
論文 参考訳(メタデータ) (2022-10-14T15:20:17Z) - Ensembling improves stability and power of feature selection for deep
learning models [11.973624420202388]
本稿では,ディープラーニングモデルの設計と訓練における本質性によって,一般的に用いられる特徴重要度スコアが不安定になることを示す。
我々は、異なるエポックにおけるモデルの重要度スコアのアンサンブルについて検討し、この単純なアプローチがこの問題に実質的に対処できることを見出した。
訓練されたモデルの特徴的重要度を組み合わせるためのフレームワークを提案し、一つのベストモデルから特徴を選択する代わりに、多くの優れたモデルから特徴的重要度スコアのアンサンブルを実行する。
論文 参考訳(メタデータ) (2022-10-02T19:07:53Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
同じ良い線形モデルから非負関数に対する最初のモデルを提供する。
我々は、それが表現定理を認め、凸問題に対する効率的な二重定式化を提供することを証明した。
論文 参考訳(メタデータ) (2020-07-08T07:17:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。