Friend or Foe? Harnessing Controllable Overfitting for Anomaly Detection
- URL: http://arxiv.org/abs/2412.00560v2
- Date: Mon, 04 Aug 2025 14:13:34 GMT
- Title: Friend or Foe? Harnessing Controllable Overfitting for Anomaly Detection
- Authors: Long Qian, Bingke Zhu, Yingying Chen, Ming Tang, Jinqiao Wang,
- Abstract summary: Overfitting has traditionally been viewed as detrimental to anomaly detection.<n>We introduce Controllable Overfitting-based Anomaly Detection (COAD), a novel framework that strategically leverages overfitting to enhance anomaly discrimination capabilities.
- Score: 30.77558600436759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Overfitting has traditionally been viewed as detrimental to anomaly detection, where excessive generalization often limits models' sensitivity to subtle anomalies. Our work challenges this conventional view by introducing Controllable Overfitting-based Anomaly Detection (COAD), a novel framework that strategically leverages overfitting to enhance anomaly discrimination capabilities. We propose the Aberrance Retention Quotient (ARQ), a novel metric that systematically quantifies the extent of overfitting, enabling the identification of an optimal golden overfitting interval wherein model sensitivity to anomalies is maximized without sacrificing generalization. To comprehensively capture how overfitting affects detection performance, we further propose the Relative Anomaly Distribution Index (RADI), a metric superior to traditional AUROC by explicitly modeling the separation between normal and anomalous score distributions. Theoretically, RADI leverages ARQ to track and evaluate how overfitting impacts anomaly detection, offering an integrated approach to understanding the relationship between overfitting dynamics and model efficacy. We also rigorously validate the statistical efficacy of Gaussian noise as pseudo-anomaly generators, reinforcing the method's broad applicability. Empirical evaluations demonstrate that our controllable overfitting method achieves State-Of-The-Art(SOTA) performance in both one-class and multi-class anomaly detection tasks, thus redefining overfitting as a powerful strategy rather than a limitation.
Related papers
- Fair Deepfake Detectors Can Generalize [51.21167546843708]
We show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions.<n>Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals.<n>DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art
arXiv Detail & Related papers (2025-07-03T14:10:02Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - Towards Anomaly-Aware Pre-Training and Fine-Tuning for Graph Anomaly Detection [59.042018542376596]
Graph anomaly detection (GAD) has garnered increasing attention in recent years, yet remains challenging due to two key factors.<n>Anomaly-Aware Pre-Training and Fine-Tuning (APF) is a framework to mitigate the challenges in GAD.<n> Comprehensive experiments on 10 benchmark datasets validate the superior performance of APF in comparison to state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-19T09:57:35Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.
Existing methods attempt to address domain shifts by training generalizable models.
Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - Anomaly Detection via Autoencoder Composite Features and NCE [1.2891210250935148]
Autoencoders (AEs) or generative models are often employed to model the data distribution of normal inputs.
We propose a decoupled training approach for anomaly detection that both an AE and a likelihood model trained with noise contrastive estimation (NCE)
arXiv Detail & Related papers (2025-02-04T01:29:22Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - Adversarially Robust Industrial Anomaly Detection Through Diffusion Model [23.97654469255749]
We propose a simple yet effective adversarially robust anomaly detection method, textitAdvRAD, that allows the diffusion model to act both as an anomaly detector and adversarial purifier.
Our proposed method exhibits outstanding (certified) adversarial robustness while also maintaining equally strong anomaly detection performance on par with the state-of-the-art methods on industrial anomaly detection benchmark datasets.
arXiv Detail & Related papers (2024-08-09T03:25:19Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Towards a Unified Framework of Clustering-based Anomaly Detection [18.30208347233284]
Unsupervised Anomaly Detection (UAD) plays a crucial role in identifying abnormal patterns within data without labeled examples.
We propose a novel probabilistic mixture model for anomaly detection to establish a theoretical connection among representation learning, clustering, and anomaly detection.
We have devised an improved anomaly score that more effectively harnesses the combined power of representation learning and clustering.
arXiv Detail & Related papers (2024-06-01T14:30:12Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection [37.992737349167676]
We propose a multi-normal-pattern accommodated anomaly detection method in the frequency domain for time series anomaly detection.
There are three novel characteristics of it: (i) a pattern extraction mechanism excelling at handling diverse normal patterns with a unified model; (ii) a dualistic convolution mechanism that amplifies short-term anomalies in the time domain and hinders the reconstruction of anomalies in the frequency domain; and (iii) leveraging the sparsity and parallelism of frequency domain to enhance model efficiency.
arXiv Detail & Related papers (2023-11-26T03:31:43Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Don't Miss Out on Novelty: Importance of Novel Features for Deep Anomaly
Detection [64.21963650519312]
Anomaly Detection (AD) is a critical task that involves identifying observations that do not conform to a learned model of normality.
We propose a novel approach to AD using explainability to capture such novel features as unexplained observations in the input space.
Our approach establishes a new state-of-the-art across multiple benchmarks, handling diverse anomaly types.
arXiv Detail & Related papers (2023-10-01T21:24:05Z) - One-Step Detection Paradigm for Hyperspectral Anomaly Detection via
Spectral Deviation Relationship Learning [17.590080772567678]
Hyperspectral anomaly detection involves identifying the targets that deviate spectrally from their surroundings.
The current deep detection models are optimized to complete a proxy task, such as background reconstruction or generation.
In this paper, an unsupervised transferred direct detection model is proposed, which is optimized directly for the anomaly detection task.
arXiv Detail & Related papers (2023-03-22T06:41:09Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
We reformulate the reconstruction process using a diffusion model into a noise-to-norm paradigm.
We propose a rapid one-step denoising paradigm, significantly faster than the traditional iterative denoising in diffusion models.
The segmentation sub-network predicts pixel-level anomaly scores using the input image and its anomaly-free restoration.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Diminishing Empirical Risk Minimization for Unsupervised Anomaly
Detection [0.0]
Empirical Risk Minimization (ERM) assumes that the performance of an algorithm on an unknown distribution can be approximated by averaging losses on the known training set.
We propose a novel Diminishing Empirical Risk Minimization (DERM) framework to break through the limitations of ERM.
DERM adaptively adjusts the impact of individual losses through a well-devised aggregation strategy.
arXiv Detail & Related papers (2022-05-29T14:18:26Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
Anomaly detection presents a unique challenge in machine learning, due to the scarcity of labeled anomaly data.
Recent work attempts to mitigate such problems by augmenting training of deep anomaly detection models with additional labeled anomaly samples.
In this paper, we aim to understand the effect of a biased anomaly set on anomaly detection.
arXiv Detail & Related papers (2021-05-16T03:55:02Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.