論文の概要: The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
- arxiv url: http://arxiv.org/abs/2412.00568v1
- Date: Sat, 30 Nov 2024 19:42:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:42.060167
- Title: The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning
- Title(参考訳): The Well: 機械学習のための大規模分散物理シミュレーションのコレクション
- Authors: Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina J. Agocs, Miguel Beneitez, Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond B. Fielding, Daniel Fortunato, Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich R. Kerswell, Suryanarayana Maddu, Jonah Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain Watteaux, Bruno Régaldo-Saint Blancard, François Rozet, Liam H. Parker, Miles Cranmer, Shirley Ho,
- Abstract要約: ウェルは様々な物理系の数値シミュレーションの大規模なコレクションである。
これらのデータセットは、個別またはより広範なベンチマークスイートの一部として使用することができる。
モデルをトレーニングし、評価するための統合されたPyTorchインターフェースを提供する。
- 参考スコア(独自算出の注目度): 4.861642399720316
- License:
- Abstract: Machine learning based surrogate models offer researchers powerful tools for accelerating simulation-based workflows. However, as standard datasets in this space often cover small classes of physical behavior, it can be difficult to evaluate the efficacy of new approaches. To address this gap, we introduce the Well: a large-scale collection of datasets containing numerical simulations of a wide variety of spatiotemporal physical systems. The Well draws from domain experts and numerical software developers to provide 15TB of data across 16 datasets covering diverse domains such as biological systems, fluid dynamics, acoustic scattering, as well as magneto-hydrodynamic simulations of extra-galactic fluids or supernova explosions. These datasets can be used individually or as part of a broader benchmark suite. To facilitate usage of the Well, we provide a unified PyTorch interface for training and evaluating models. We demonstrate the function of this library by introducing example baselines that highlight the new challenges posed by the complex dynamics of the Well. The code and data is available at https://github.com/PolymathicAI/the_well.
- Abstract(参考訳): 機械学習ベースのサロゲートモデルは、シミュレーションベースのワークフローを加速するための強力なツールを提供する。
しかし、この分野の標準データセットは、物理行動の小さなクラスをカバーすることが多いため、新しいアプローチの有効性を評価することは困難である。
このギャップに対処するために、様々な時空間物理系の数値シミュレーションを含む大規模なデータセットのコレクションであるWellを紹介する。
Wellは、生物システム、流体力学、音響散乱、および銀河外流体や超新星爆発の磁気流体力学シミュレーションなど、さまざまな領域をカバーする16のデータセットに15TBのデータを提供する。
これらのデータセットは、個別またはより広範なベンチマークスイートの一部として使用することができる。
Wellの使用を容易にするため、モデルをトレーニングおよび評価するための統合されたPyTorchインターフェースを提供する。
我々は,ウェルの複雑な力学によって引き起こされる新たな課題を浮き彫りにしたサンプルベースラインを導入することで,このライブラリの機能を示す。
コードとデータはhttps://github.com/PolymathicAI/the_wellで公開されている。
関連論文リスト
- Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - CoDBench: A Critical Evaluation of Data-driven Models for Continuous
Dynamical Systems [8.410938527671341]
微分方程式を解くための11の最先端データ駆動モデルからなる総合ベンチマークスイートであるCodBenchを紹介する。
具体的には、Viz.、フィードフォワードニューラルネットワーク、ディープオペレータ回帰モデル、周波数ベースのニューラル演算子、トランスフォーマーアーキテクチャの4つの異なるカテゴリを評価する。
我々は、学習におけるオペレータの能力、ゼロショット超解像、データ効率、ノイズに対する堅牢性、計算効率を評価する広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-02T21:27:54Z) - Eagle: Large-Scale Learning of Turbulent Fluid Dynamics with Mesh
Transformers [23.589419066824306]
流体力学を推定することは、解決するのが非常に難しい。
問題に対する新しいモデル,メソッド,ベンチマークを導入する。
我々の変換器は、既存の合成データセットと実際のデータセットの両方において、最先端のパフォーマンスより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-16T12:59:08Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - SUPA: A Lightweight Diagnostic Simulator for Machine Learning in
Particle Physics [0.0]
SUPAは, 簡易な粒子伝搬, 散乱, シャワー発生をシミュレーションしてデータを生成するアルゴリズムおよびソフトウェアパッケージである。
提案したシミュレータは、デスクトップマシン上で毎秒数千の粒子シャワーを発生し、Geant4の最大6桁の速度を発生させる。
論文 参考訳(メタデータ) (2022-02-10T13:14:12Z) - Deeptime: a Python library for machine learning dynamical models from
time series data [3.346668383314945]
Deeptimeは、時系列データに基づいて動的モデルを推定する様々なツールを提供する汎用Pythonライブラリである。
本稿では,ディープタイムソフトウェアの主な特徴と構造を紹介する。
論文 参考訳(メタデータ) (2021-10-28T10:53:03Z) - PREPRINT: Comparison of deep learning and hand crafted features for
mining simulation data [7.214140640112874]
本稿では,高次元データセットから有意な結果を自動抽出する作業について述べる。
このようなデータを処理することができる深層学習手法を提案し、シミュレーションデータに関する関連するタスクを解決するように訓練することができる。
16,000フローフィールドを含む翼まわりの流れ場の2次元シミュレーションの大規模なデータセットをコンパイルし,比較を行った。
論文 参考訳(メタデータ) (2021-03-11T09:28:00Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
本稿では,大理石を円形迷路の中心まで航行する作業について述べる。
実システムと対話する数分以内に,複雑な環境で大理石を動かすことを学習するモデルを提案する。
論文 参考訳(メタデータ) (2020-11-14T02:03:08Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。