Photoacoustic Iterative Optimization Algorithm with Shape Prior Regularization
- URL: http://arxiv.org/abs/2412.00705v5
- Date: Sat, 04 Jan 2025 03:25:27 GMT
- Title: Photoacoustic Iterative Optimization Algorithm with Shape Prior Regularization
- Authors: Yu Zhang, Shuang Li, Yibing Wang, Yu Sun, Wenyi Xiang,
- Abstract summary: Photoacoustic imaging (PAI) suffers from inherent limitations that can degrade the quality of reconstructed results.<n>We propose a new optimization method for both 2D and 3D PAI reconstruction results, called the regularized iteration method with shape prior.
- Score: 18.99190657089862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photoacoustic imaging (PAI) suffers from inherent limitations that can degrade the quality of reconstructed results, such as noise, artifacts and incomplete data acquisition caused by sparse sampling or partial array detection. In this study, we proposed a new optimization method for both two-dimensional (2D) and three-dimensional (3D) PAI reconstruction results, called the regularized iteration method with shape prior. The shape prior is a probability matrix derived from the reconstruction results of multiple sets of random partial array signals in a computational imaging system using any reconstruction algorithm, such as Delay-and-Sum (DAS) and Back-Projection (BP). In the probability matrix, high-probability locations indicate high consistency among multiple reconstruction results at those positions, suggesting a high likelihood of representing the true imaging results. In contrast, low-probability locations indicate higher randomness, leaning more towards noise or artifacts. As a shape prior, this probability matrix guides the iteration and regularization of the entire array signal reconstruction results using the original reconstruction algorithm (the same algorithm for processing random partial array signals). The method takes advantage of the property that the similarity of the object to be imitated is higher than that of noise or artifact in the results reconstructed by multiple sets of random partial array signals of the entire imaging system. The probability matrix is taken as a prerequisite for improving the original reconstruction results, and the optimizer is used to further iterate the imaging results to remove noise and artifacts and improve the imaging fidelity. Especially in the case involving sparse view which brings more artifacts, the effect is remarkable. Simulation and real experiments have both demonstrated the superiority of this method.
Related papers
- One-bit Compressed Sensing using Generative Models [20.819739287436317]
This paper addresses the classical problem of one-bit compressed sensing using a deep learning-based reconstruction algorithm.
A pre-trained neural network learns to map from a low-dimensional latent space to a higher-dimensional set of sparse vectors.
The presented algorithm provides an excellent reconstruction performance because the generative model can learn additional structural information about the signal beyond sparsity.
arXiv Detail & Related papers (2025-02-18T11:28:35Z) - Integrating Generative and Physics-Based Models for Ptychographic Imaging with Uncertainty Quantification [0.0]
Ptychography is a scanning coherent diffractive imaging technique that enables imaging nanometer-scale features in extended samples.
This paper proposes a Bayesian inversion method for ptychography that performs effectively even with less overlap between neighboring scan locations.
arXiv Detail & Related papers (2024-12-14T16:16:37Z) - Generalization of pixel-wise phase estimation by CNN and improvement of
phase-unwrapping by MRF optimization for one-shot 3D scan [0.621405559652172]
Active stereo technique using single pattern projection, a.k.a. one-shot 3D scan, have drawn a wide attention from industry, medical purposes, etc.
One severe drawback of one-shot 3D scan is sparse reconstruction.
We propose a pixel-wise technique for one-shot scan, which is applicable to any types of static pattern if the pattern is regular and periodic.
arXiv Detail & Related papers (2023-09-26T10:45:04Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D
Reconstruction with Symmetry [12.511526058118143]
We propose a sampling scheme that theoretically encourages generalization and results in fast convergence for SGD-based optimization algorithms.
Based on the reflective symmetry of an object, we propose a feature fusion method that alleviates issues due to self-occlusions.
Our proposed system Ladybird is able to create high quality 3D object reconstructions from a single input image.
arXiv Detail & Related papers (2020-07-27T09:17:00Z) - 1D Probabilistic Undersampling Pattern Optimization for MR Image
Reconstruction [3.46218629010647]
We propose a cross-domain network for MR image reconstruction, in a retrospective data-driven manner, under limited sampling rates.
Our method can simultaneously obtain the optimal undersampling pattern (in k-space) and the reconstruction model, which are customized to the type of training data.
arXiv Detail & Related papers (2020-03-08T15:15:37Z) - Kullback-Leibler Divergence-Based Fuzzy $C$-Means Clustering
Incorporating Morphological Reconstruction and Wavelet Frames for Image
Segmentation [152.609322951917]
We come up with a Kullback-Leibler (KL) divergence-based Fuzzy C-Means (FCM) algorithm by incorporating a tight wavelet frame transform and a morphological reconstruction operation.
The proposed algorithm works well and comes with better segmentation performance than other comparative algorithms.
arXiv Detail & Related papers (2020-02-21T05:19:10Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
We study the performance of iterative sketching for least-squares problems.
We show that the convergence rate for Haar and randomized Hadamard matrices are identical, andally improve upon random projections.
These techniques may be applied to other algorithms that employ randomized dimension reduction.
arXiv Detail & Related papers (2020-02-03T16:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.