Detecting entanglement and nonlocality with minimum observable length
- URL: http://arxiv.org/abs/2412.00795v1
- Date: Sun, 01 Dec 2024 12:40:50 GMT
- Title: Detecting entanglement and nonlocality with minimum observable length
- Authors: Zhuo Chen, Fei Shi, Qi Zhao,
- Abstract summary: " detection length" is a metric that quantifies the extent of measurement globality required to verify entanglement or nonlocality.
We extend the detection length framework to encompass various entanglement categories and nonlocality phenomena.
We demonstrate that witnesses with shorter detection lengths can exhibit superior performance under certain conditions.
- Score: 20.029869022276277
- License:
- Abstract: Quantum entanglement and nonlocality are foundational to quantum technologies, driving quantum computation, communication, and cryptography innovations. To benchmark the capabilities of these quantum techniques, efficient detection and accurate quantification methods are indispensable. This paper focuses on the concept of "detection length" -- a metric that quantifies the extent of measurement globality required to verify entanglement or nonlocality. We extend the detection length framework to encompass various entanglement categories and nonlocality phenomena, providing a comprehensive analytical model to determine detection lengths for specified forms of entanglement. Furthermore, we exploit semidefinite programming techniques to construct entanglement witnesses and Bell's inequalities tailored to specific minimal detection lengths, offering an upper bound for detection lengths in given states. By assessing the noise robustness of these witnesses, we demonstrate that witnesses with shorter detection lengths can exhibit superior performance under certain conditions.
Related papers
- Bounding the Sample Fluctuation for Pure States Certification with Local Random Measurement [4.923287660970805]
Recent advancements in randomized measurement techniques have provided fresh insights in this area.
We investigate the fundamental properties of schemes that certify pure quantum states through random local Haar measurements.
Our results unveil the intrinsic interplay between operator complexity and the efficiency of quantum algorithms, serving as an obstacle to local certification of pure states with long-range entanglement.
arXiv Detail & Related papers (2024-10-22T02:26:44Z) - High-dimentional Multipartite Entanglement Structure Detection with Low Cost [18.876952671920133]
We propose a neural network model to generate representations suitable for entanglement structure detection.
Our method achieves over 95% detection accuracy for up to 19 qubits systems.
arXiv Detail & Related papers (2024-08-23T12:09:26Z) - Entanglement detection length of multipartite quantum states [18.335755852205732]
We introduce the concept of entanglement detection length, defined as the minimum number of particles that have to be jointly measured.
We show that the entanglement detection length is generally smaller than the minimum observable length needed to uniquely determine a multipartite state.
arXiv Detail & Related papers (2024-01-07T02:13:47Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Separability criterion using one observable for special states: Entanglement detection via quantum quench [0.0]
We establish the class of states where measuring connected correlations in just $textitone$ basis is sufficient.
We discuss the possibility of one observable entanglement detection in a variety of systems, including those without conserved charges.
arXiv Detail & Related papers (2023-07-07T17:37:11Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.