Entanglement detection length of multipartite quantum states
- URL: http://arxiv.org/abs/2401.03367v2
- Date: Thu, 21 Nov 2024 02:16:29 GMT
- Title: Entanglement detection length of multipartite quantum states
- Authors: Fei Shi, Lin Chen, Giulio Chiribella, Qi Zhao,
- Abstract summary: We introduce the concept of entanglement detection length, defined as the minimum number of particles that have to be jointly measured.
We show that the entanglement detection length is generally smaller than the minimum observable length needed to uniquely determine a multipartite state.
- Score: 18.335755852205732
- License:
- Abstract: Multipartite entanglement is a valuable resource for quantum technologies. However, detecting this resource can be challenging: for genuine multipartite entanglement, the detection may require global measurements that are hard to implement experimentally. Here we introduce the concept of entanglement detection length, defined as the minimum number of particles that have to be jointly measured in order to detect genuine multipartite entanglement. For symmetric states, we show that the entanglement detection length can be determined by testing separability of the marginal states. For general states, we provide an upper bound on the entanglement detection length based on semidefinite programming. We show that the entanglement detection length is generally smaller than the minimum observable length needed to uniquely determine a multipartite state, and we provide examples achieving the maximum gap between these two quantities.
Related papers
- Detecting the dimensionality of genuine multi-particle entanglement [0.0]
State-of-the-art quantum technology is becoming increasingly able to create entangled states that feature many particles and high dimension.
Here, we investigate generic states that can be considered both genuinely high-dimensional and genuine multi-particle entangled.
arXiv Detail & Related papers (2024-02-09T08:03:05Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Multipartite entanglement detection based on generalized state-dependent
entropic uncertainty relation for multiple measurements [15.907303576427644]
We present the generalized state-dependent entropic uncertainty relations for multiple measurement settings.
We give the experimentally accessible lower bounds on both bipartite and tripartite entanglements.
arXiv Detail & Related papers (2022-11-02T06:26:07Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Certification of Genuine Multipartite Entanglement with General and
Robust Device-independent Witnesses [11.468122934770788]
Genuine multipartite entanglement represents the strongest type of entanglement, which is an essential resource for quantum information processing.
Standard methods to detect genuine multipartite entanglement require full knowledge of the Hilbert space dimension and precise calibration of measurement devices.
In this work, we explore a general and robust DI method which can be applied to various realistic multipartite quantum state in arbitrary finite dimension.
arXiv Detail & Related papers (2021-08-29T07:15:45Z) - How many mutually unbiased bases are needed to detect bound entangled
states? [1.3544498422625448]
We show that a class of entanglement witnesses composed of mutually unbiased bases can detect bound entanglement if the number of measurements is greater than $d/2+1$.
This is a substantial improvement over other detection methods, requiring significantly fewer resources than either full quantum state tomography or measuring a complete set of $d+1$ MUBs.
arXiv Detail & Related papers (2021-08-02T18:15:11Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Entanglement detection in quantum many-body systems using entropic
uncertainty relations [0.0]
We study experimentally accessible lower bounds on entanglement measures based on entropic uncertainty relations.
We derive an improved entanglement bound for bipartite systems, which requires measuring joint probability distributions in only two different measurement settings per subsystem.
arXiv Detail & Related papers (2021-01-21T20:50:11Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - Genuine Network Multipartite Entanglement [62.997667081978825]
We argue that a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$.
We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
arXiv Detail & Related papers (2020-02-07T13:26:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.