論文の概要: Examining Identity Drift in Conversations of LLM Agents
- arxiv url: http://arxiv.org/abs/2412.00804v2
- Date: Mon, 17 Feb 2025 03:11:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 16:13:23.19007
- Title: Examining Identity Drift in Conversations of LLM Agents
- Title(参考訳): LLMエージェントの会話におけるアイデンティティドリフトの検討
- Authors: Junhyuk Choi, Yeseon Hong, Minju Kim, Bugeun Kim,
- Abstract要約: 本研究では,9つの大言語モデル(LLM)におけるアイデンティティの整合性について検討する。
実験は、質的、定量的な方法で分析された、個人的なテーマに関するマルチターン会話を含む。
- 参考スコア(独自算出の注目度): 5.12659586713042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) show impressive conversational abilities but sometimes show identity drift problems, where their interaction patterns or styles change over time. As the problem has not been thoroughly examined yet, this study examines identity consistency across nine LLMs. Specifically, we (1) investigate whether LLMs could maintain consistent patterns (or identity) and (2) analyze the effect of the model family, parameter sizes, and provided persona types. Our experiments involve multi-turn conversations on personal themes, analyzed in qualitative and quantitative ways. Experimental results indicate three findings. (1) Larger models experience greater identity drift. (2) Model differences exist, but their effect is not stronger than parameter sizes. (3) Assigning a persona may not help to maintain identity. We hope these three findings can help to improve persona stability in AI-driven dialogue systems, particularly in long-term conversations.
- Abstract(参考訳): 大きな言語モデル(LLM)は、印象的な会話能力を示すが、時にアイデンティティドリフトの問題を示す。
本研究はまだ徹底的に検討されていないため,9つのLDMにおけるアイデンティティの整合性について検討した。
具体的には,(1)LLMが一貫したパターン(あるいはアイデンティティ)を維持することができるか,(2)モデルファミリー,パラメータサイズ,提供されるペルソナタイプの影響を解析する。
我々の実験は、質的、定量的な方法で分析された、個人テーマにおけるマルチターン会話を含む。
実験結果から3つの結果が得られた。
1)より大型のモデルではアイデンティティドリフトが大きくなる。
2) モデルの違いはあるが, その効果はパラメータサイズほど強くない。
(3) ペルソナの指定はアイデンティティの維持に役立ちません。
これらの3つの発見が、AIによる対話システム、特に長期的な会話におけるペルソナの安定性の向上に役立つことを願っている。
関連論文リスト
- If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs [55.8331366739144]
大規模言語モデル(LLM)における生涯学習評価のためのベンチマークであるLIFESTATE-BENCHを紹介する。
我々の事実チェック評価は、パラメトリックと非パラメトリックの両方のアプローチで、モデルの自己認識、エピソードメモリ検索、関係追跡を探索する。
論文 参考訳(メタデータ) (2025-03-30T16:50:57Z) - Poor Alignment and Steerability of Large Language Models: Evidence from College Admission Essays [19.405531377930977]
本研究では,大規模言語モデル (LLM) を高文脈で使用することを検討した。
両タイプのLCMエッセイは,人間によるエッセイとは言語的に異なることがわかった。
人口統計学的に誘発され、未発達の合成テキストは、人間のテキストよりも互いに類似していた。
論文 参考訳(メタデータ) (2025-03-25T20:54:50Z) - REALTALK: A 21-Day Real-World Dataset for Long-Term Conversation [51.97224538045096]
本稿では、21日間のメッセージアプリ対話のコーパスであるREALTALKを紹介する。
EI属性とペルソナの整合性を比較し,現実世界の対話による課題を理解する。
その結果,モデルでは対話履歴のみからユーザをシミュレートすることが困難であり,特定のユーザチャットの微調整はペルソナのエミュレーションを改善することがわかった。
論文 参考訳(メタデータ) (2025-02-18T20:29:01Z) - Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
本稿では,キャラクタの言語パターンと特徴的思考過程の両方を再現するモデルであるキャラクタボットを紹介する。
ケーススタディとしてLu Xunを用いて、17冊のエッセイコレクションから得られた4つのトレーニングタスクを提案する。
これには、外部の言語構造と知識を習得することに焦点を当てた事前訓練タスクと、3つの微調整タスクが含まれる。
言語的正確性と意見理解の3つのタスクにおいて、キャラクタボットを評価し、適応されたメトリクスのベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-02-18T16:11:54Z) - Can LLM Agents Maintain a Persona in Discourse? [3.286711575862228]
大規模言語モデル(LLM)は、教育、法律、医学など、様々な分野でその能力を利用する会話エージェントとして広く利用されている。
LLMは、しばしばコンテキストシフトの振る舞いを受け、一貫性と解釈可能なパーソナリティ整合性の相互作用が欠如する。
LLMはパーソナライズされた対話へと導くことができるが、その性格特性を維持する能力はモデルと談話設定の組み合わせによって大きく異なる。
論文 参考訳(メタデータ) (2025-02-17T14:36:39Z) - Self-Directed Turing Test for Large Language Models [56.64615470513102]
チューリングテストは、自然言語の会話においてAIが人間のような振る舞いを示すことができるかどうかを調べる。
従来のチューリングテストでは、各参加者が1回に1つのメッセージだけを送信する厳格な対話形式を採用している。
本稿では,バーストダイアログ形式を用いた自己指示チューリングテストを提案する。
論文 参考訳(メタデータ) (2024-08-19T09:57:28Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - Can Large Language Models Automatically Score Proficiency of Written Essays? [3.993602109661159]
大規模言語モデル(LLMs)は、様々なタスクにおいて異常な能力を示すトランスフォーマーベースのモデルである。
我々は,LLMの強力な言語知識を活かして,エッセイを分析し,効果的に評価する能力をテストする。
論文 参考訳(メタデータ) (2024-03-10T09:39:00Z) - PHAnToM: Persona-based Prompting Has An Effect on Theory-of-Mind Reasoning in Large Language Models [25.657579792829743]
我々は,ロールプレイングの促進が理論・オブ・ミンド(ToM)推論能力にどのように影響するかを実証的に評価した。
本稿では、推論タスクの複雑さの固有のばらつきを超えて、社会的に動機づけられた相違が原因で、パフォーマンスの違いが発生するメカニズムを提案する。
論文 参考訳(メタデータ) (2024-03-04T17:34:34Z) - Identifying Multiple Personalities in Large Language Models with
External Evaluation [6.657168333238573]
大きな言語モデル(LLM)は、人間の日常的なアプリケーションと迅速に統合されます。
近年の多くの研究は、人間のために作られた自己評価テストを用いて、LLMの個性を定量化している。
しかし、LCMに適用した場合、これらの自己評価テストの適用性と信頼性に疑問を呈する批評家も多い。
論文 参考訳(メタデータ) (2024-02-22T18:57:20Z) - You don't need a personality test to know these models are unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments [37.03210795084276]
本稿では, 大規模言語モデルが応答を一貫した, 頑健な方法で引き起こすかどうかを考察する。
17種類のLDM実験により,単純な摂動でさえモデルの問合せ能力を大幅に低下させることが判明した。
その結果,現在広く普及しているプロンプトは,モデル知覚を正確にかつ確実に捉えるには不十分であることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T09:50:53Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using
PsychoBench [83.41621219298489]
大規模言語モデル(LLM)の多様な心理学的側面を評価するためのフレームワーク「サイコベンチ」を提案する。
サイコベンチはこれらの尺度を、性格特性、対人関係、モチベーションテスト、感情能力の4つのカテゴリーに分類する。
我々は、安全アライメントプロトコルをバイパスし、LLMの本質的な性質をテストするためにジェイルブレイクアプローチを採用している。
論文 参考訳(メタデータ) (2023-10-02T17:46:09Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
影響認識は人間のコミュニケーションにおいて重要な役割を担っている。
本研究では,会話における人間の影響を認識するための言語モデル(LLM)の能力について検討する。
論文 参考訳(メタデータ) (2023-09-22T14:11:23Z) - Emotionally Numb or Empathetic? Evaluating How LLMs Feel Using EmotionBench [83.41621219298489]
心理学からの感情評価理論を用いて,Large Language Models (LLMs) の人為的能力を評価する。
我々は、研究の中心となる8つの感情を引き出すのに有効な400以上の状況を含むデータセットを収集した。
我々は世界中の1200人以上の被験者を対象に人間による評価を行った。
論文 参考訳(メタデータ) (2023-08-07T15:18:30Z) - Large Language Models as Superpositions of Cultural Perspectives [25.114678091641935]
大きな言語モデル(LLM)は、しばしば個性や値の集合を持つものとして誤解を招く。
LLMは、異なる価値観と性格特性を持つ視点の重ね合わせとみなすことができる。
論文 参考訳(メタデータ) (2023-07-15T19:04:33Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - Influence of External Information on Large Language Models Mirrors
Social Cognitive Patterns [51.622612759892775]
社会的認知理論は、人々が他人を観察して知識を習得する方法を説明する。
近年,大規模言語モデル(LLM)の急速な発展を目撃している。
LLMは、AIエージェントとして、その認知と行動を形成する外部情報を観察することができる。
論文 参考訳(メタデータ) (2023-05-08T16:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。