論文の概要: SAUP: Situation Awareness Uncertainty Propagation on LLM Agent
- arxiv url: http://arxiv.org/abs/2412.01033v1
- Date: Mon, 02 Dec 2024 01:31:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:15.968923
- Title: SAUP: Situation Awareness Uncertainty Propagation on LLM Agent
- Title(参考訳): SAUP:LLMエージェントの状況認識不確実性伝播
- Authors: Qiwei Zhao, Xujiang Zhao, Yanchi Liu, Wei Cheng, Yiyou Sun, Mika Oishi, Takao Osaki, Katsushi Matsuda, Huaxiu Yao, Haifeng Chen,
- Abstract要約: 大規模言語モデル(LLM)は多段階エージェントシステムに統合され、様々なアプリケーションにまたがる複雑な意思決定プロセスを可能にする。
既存の不確実性推定手法は主に最終段階の出力に重点を置いており、これは多段階決定プロセスにおける累積的不確実性やエージェントとその環境間の動的相互作用を考慮できない。
LLMエージェントの推論プロセスの各ステップを通じて不確実性を伝播する新しいフレームワークであるSAUPを提案する。
- 参考スコア(独自算出の注目度): 52.444674213316574
- License:
- Abstract: Large language models (LLMs) integrated into multistep agent systems enable complex decision-making processes across various applications. However, their outputs often lack reliability, making uncertainty estimation crucial. Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multistep decision-making process and the dynamic interactions between agents and their environments. To address these limitations, we propose SAUP (Situation Awareness Uncertainty Propagation), a novel framework that propagates uncertainty through each step of an LLM-based agent's reasoning process. SAUP incorporates situational awareness by assigning situational weights to each step's uncertainty during the propagation. Our method, compatible with various one-step uncertainty estimation techniques, provides a comprehensive and accurate uncertainty measure. Extensive experiments on benchmark datasets demonstrate that SAUP significantly outperforms existing state-of-the-art methods, achieving up to 20% improvement in AUROC.
- Abstract(参考訳): 大規模言語モデル(LLM)は多段階エージェントシステムに統合され、様々なアプリケーションにまたがる複雑な意思決定プロセスを可能にする。
しかし、その出力は信頼性に欠けることが多く、不確実性の推定が重要である。
既存の不確実性推定手法は主に最終段階の出力に重点を置いており、これは多段階決定プロセスにおける累積的不確実性やエージェントとその環境間の動的相互作用を考慮できない。
これらの制約に対処するため,LSMエージェントの推論プロセスの各ステップを通じて不確実性を伝播する新しいフレームワークであるSAUP(Situation Awareness Uncertainty Propagation)を提案する。
SAUPは、伝搬中の各ステップの不確実性に状況重みを割り当てることで状況認識を取り入れている。
提案手法は, 様々な一段階不確実性評価手法と互換性があり, 包括的かつ正確な不確実性評価手法を提供する。
ベンチマークデータセットに関する大規模な実験では、SAUPが既存の最先端メソッドを著しく上回り、AUROCで最大20%の改善が達成されている。
関連論文リスト
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
認識と計画生成の不確実性を解消し、定量化し、緩和する包括的枠組みを提案する。
本稿では,知覚と意思決定の独特な性質に合わせた手法を提案する。
この不確実性分散フレームワークは, 変動率を最大40%削減し, タスク成功率をベースラインに比べて5%向上させることを示した。
論文 参考訳(メタデータ) (2024-11-03T17:32:00Z) - CLUE: Concept-Level Uncertainty Estimation for Large Language Models [49.92690111618016]
大規模言語モデル(LLM)のための概念レベル不確実性推定のための新しいフレームワークを提案する。
LLMを利用して、出力シーケンスを概念レベルの表現に変換し、シーケンスを個別の概念に分解し、各概念の不確かさを個別に測定する。
我々は,文レベルの不確実性と比較して,CLUEがより解釈可能な不確実性推定結果を提供できることを示す実験を行った。
論文 参考訳(メタデータ) (2024-09-04T18:27:12Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
LLMにおける不確実性推定と校正の問題について検討する。
LLMの応答の不確かさを推定するためにラベル付きデータセットを利用する教師付きアプローチを提案する。
本手法は,ブラックボックス,グレイボックス,ホワイトボックスなど,モデルアクセシビリティの異なるレベルに適応し,実装が容易である。
論文 参考訳(メタデータ) (2024-04-24T17:10:35Z) - SPUQ: Perturbation-Based Uncertainty Quantification for Large Language
Models [9.817185255633758]
大規模言語モデル(LLM)がますます普及し、顕著なテキスト生成機能を提供している。
プレッシャーの課題は、自信を持って間違った予測をする傾向にある。
本稿では,浮腫とてんかんの両不確実性に対処するために,新しいUQ法を提案する。
その結果,モデルキャリブレーションは大幅に改善し,予測誤差(ECE)は平均50%減少した。
論文 参考訳(メタデータ) (2024-03-04T21:55:22Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Ensemble Quantile Networks: Uncertainty-Aware Reinforcement Learning
with Applications in Autonomous Driving [1.6758573326215689]
強化学習は、自律運転のための意思決定エージェントを作成するために使用できる。
これまでのアプローチではブラックボックスソリューションのみを提供しており、エージェントがその決定に対する自信について情報を提供していない。
本稿では,分布RLとアンサンブルアプローチを組み合わせて完全不確実性推定を行うEnsemble Quantile Networks (EQN)法を提案する。
論文 参考訳(メタデータ) (2021-05-21T10:36:16Z) - Uncertainty-Aware Boosted Ensembling in Multi-Modal Settings [33.25969141014772]
不確実性推定は、デプロイにおける機械学習システムの信頼性を強調する、広く研究されている方法である。
逐次および並列アンサンブル手法により,マルチモーダル設定におけるMLシステムの性能が向上した。
本研究では,不確かさを高く見積もるデータポイントに着目し,マルチモーダルセンシングのための不確実性認識促進手法を提案する。
論文 参考訳(メタデータ) (2021-04-21T18:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。