論文の概要: Uncertainty separation via ensemble quantile regression
- arxiv url: http://arxiv.org/abs/2412.13738v1
- Date: Wed, 18 Dec 2024 11:15:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:32.901578
- Title: Uncertainty separation via ensemble quantile regression
- Title(参考訳): アンサンブル量子レグレッションによる不確実性分離
- Authors: Navid Ansari, Hans-Peter Seidel, Vahid Babaei,
- Abstract要約: 本稿では,不確実性推定と分離のための新しい,スケーラブルなフレームワークを提案する。
我々のフレームワークは大規模データセットにスケーラブルであり、合成ベンチマークで優れた性能を示す。
- 参考スコア(独自算出の注目度): 23.667247644930708
- License:
- Abstract: This paper introduces a novel and scalable framework for uncertainty estimation and separation with applications in data driven modeling in science and engineering tasks where reliable uncertainty quantification is critical. Leveraging an ensemble of quantile regression (E-QR) models, our approach enhances aleatoric uncertainty estimation while preserving the quality of epistemic uncertainty, surpassing competing methods, such as Deep Ensembles (DE) and Monte Carlo (MC) dropout. To address challenges in separating uncertainty types, we propose an algorithm that iteratively improves separation through progressive sampling in regions of high uncertainty. Our framework is scalable to large datasets and demonstrates superior performance on synthetic benchmarks, offering a robust tool for uncertainty quantification in data-driven applications.
- Abstract(参考訳): 本稿では,信頼性のある不確実性定量化が不可欠である科学・工学におけるデータ駆動モデリングにおける,不確実性推定と分離のための新しいスケーラブルなフレームワークを提案する。
定量的回帰モデル(E-QR)のアンサンブルを応用して、我々は、Deep Ensembles (DE) や Monte Carlo (MC) のドロップアウトのような競合する手法を超越して、てんかん不確実性の質を保ちながら、アレタリック不確実性推定を強化する。
不確かさを分離する際の課題に対処するため,不確実性の高い領域におけるプログレッシブサンプリングによる分離を反復的に改善するアルゴリズムを提案する。
我々のフレームワークは大規模データセットにスケーラブルであり、データ駆動アプリケーションの不確実性定量化のための堅牢なツールを提供する合成ベンチマークで優れたパフォーマンスを示す。
関連論文リスト
- Uncertainty Quantification in Seismic Inversion Through Integrated Importance Sampling and Ensemble Methods [2.2530496464901106]
ディープラーニングベースの地震インバージョンでは、データノイズ、ニューラルネットワークの設計とトレーニング、固有のデータ制限など、さまざまなソースから不確実性が発生する。
本研究では, アンサンブル法と重要サンプリングを組み合わせた地震インバージョンにおける不確実性定量化手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T19:53:12Z) - Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning [1.7898305876314982]
提案アルゴリズムは,共形推論の原理に基づいて,深い明解学習と量子キャリブレーションを組み合わせる。
ミニチュア化されたアタリゲームスイート(MinAtar)でテストされる。
論文 参考訳(メタデータ) (2024-02-11T05:17:56Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Beta quantile regression for robust estimation of uncertainty in the
presence of outliers [1.6377726761463862]
量子回帰(Quantile Regression)は、ディープニューラルネットワークにおけるアレタリック不確実性を推定するために用いられる。
本稿では、頑健な分散の概念を取り入れた量子レグレッションのためのロバストな解を提案する。
論文 参考訳(メタデータ) (2023-09-14T01:18:57Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
複雑な力学系のモデルにおける不確実性を捉えることは、安全なコントローラの設計に不可欠である。
いくつかのアプローチでは、安全と到達可能性に関する時間的仕様を満たすポリシーを形式的な抽象化を用いて合成する。
我々の貢献は、ノイズ、不確実なパラメータ、外乱を含む連続状態モデルに対する新しい抽象的制御法である。
論文 参考訳(メタデータ) (2022-10-12T07:57:03Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
オフライン強化学習は、積極的に探索することなく、履歴データから意思決定を行うことを学習することを目的としている。
環境の不確実性や変動性から,デプロイされた環境が,ヒストリデータセットの収集に使用される名目上のものから逸脱した場合でも,良好に機能するロバストなポリシーを学ぶことが重要である。
オフラインRLの分布的ロバストな定式化を考察し、有限水平および無限水平の両方でクルバック・リーブラー発散によって指定された不確実性セットを持つロバストマルコフ決定過程に着目する。
論文 参考訳(メタデータ) (2022-08-11T11:55:31Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。