A Memory-Based Reinforcement Learning Approach to Integrated Sensing and Communication
- URL: http://arxiv.org/abs/2412.01077v1
- Date: Mon, 02 Dec 2024 03:30:50 GMT
- Title: A Memory-Based Reinforcement Learning Approach to Integrated Sensing and Communication
- Authors: Homa Nikbakht, Michèle Wigger, Shlomo Shamai, H. Vincent Poor,
- Abstract summary: We consider a point-to-point integrated sensing and communication (ISAC) system, where a transmitter conveys a message to a receiver over a channel with memory.
We formulate the capacity-distortion tradeoff for the ISAC problem when sensing is performed in an online fashion.
- Score: 52.40430937325323
- License:
- Abstract: In this paper, we consider a point-to-point integrated sensing and communication (ISAC) system, where a transmitter conveys a message to a receiver over a channel with memory and simultaneously estimates the state of the channel through the backscattered signals from the emitted waveform. Using Massey's concept of directed information for channels with memory, we formulate the capacity-distortion tradeoff for the ISAC problem when sensing is performed in an online fashion. Optimizing the transmit waveform for this system to simultaneously achieve good communication and sensing performance is a complicated task, and thus we propose a deep reinforcement learning (RL) approach to find a solution. The proposed approach enables the agent to optimize the ISAC performance by learning a reward that reflects the difference between the communication gain and the sensing loss. Since the state-space in our RL model is \`a priori unbounded, we employ deep deterministic policy gradient algorithm (DDPG). Our numerical results suggest a significant performance improvement when one considers unbounded state-space as opposed to a simpler RL problem with reduced state-space. In the extreme case of degenerate state-space only memoryless signaling strategies are possible. Our results thus emphasize the necessity of well exploiting the memory inherent in ISAC systems.
Related papers
- Integrated Sensing and Communications for Low-Altitude Economy: A Deep Reinforcement Learning Approach [20.36806314683902]
We study an integrated sensing and communications (ISAC) system for low-altitude economy (LAE)
The expected communication sum-rate over a given flight period is maximized by jointly optimizing the beamforming at the GBS and UAVs' trajectories.
We propose a novel LAE-oriented ISAC scheme, referred to as Deep LAE-ISAC (DeepLSC), by leveraging the deep reinforcement learning (DRL) technique.
arXiv Detail & Related papers (2024-12-05T11:12:46Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Effective Communication with Dynamic Feature Compression [25.150266946722]
We study a prototypal system in which an observer must communicate its sensory data to a robot controlling a task.
We consider an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
We tested the proposed approach on the well-known CartPole reference control problem, obtaining a significant performance increase.
arXiv Detail & Related papers (2024-01-29T15:35:05Z) - Speech enhancement with frequency domain auto-regressive modeling [34.55703785405481]
Speech applications in far-field real world settings often deal with signals that are corrupted by reverberation.
We propose a unified framework of speech dereverberation for improving the speech quality and the automatic speech recognition (ASR) performance.
arXiv Detail & Related papers (2023-09-24T03:25:51Z) - Semantic and Effective Communication for Remote Control Tasks with
Dynamic Feature Compression [23.36744348465991]
Coordination of robotic swarms and the remote wireless control of industrial systems are among the major use cases for 5G and beyond systems.
In this work, we consider a prototypal system in which an observer must communicate its sensory data to an actor controlling a task.
We propose an ensemble Vector Quantized Variational Autoencoder (VQ-VAE) encoding, and train a Deep Reinforcement Learning (DRL) agent to dynamically adapt the quantization level.
arXiv Detail & Related papers (2023-01-14T11:43:56Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
We propose the age of semantics (AoS) for measuring semantics freshness of status updates in a cooperative relay communication system.
We derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework.
We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset.
arXiv Detail & Related papers (2022-09-19T11:55:28Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Rethinking the Tradeoff in Integrated Sensing and Communication:
Recognition Accuracy versus Communication Rate [21.149708253108788]
Integrated sensing and communication (ISAC) is a promising technology to improve the band-utilization efficiency.
There exists a tradeoff between the sensing and communication performance.
This paper formulates and solves a multi-objective optimization problem which simultaneously maximizes the recognition accuracy and the communication data rate.
arXiv Detail & Related papers (2021-07-20T17:00:35Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.