論文の概要: DuoCast: Duo-Probabilistic Meteorology-Aware Model for Extended Precipitation Nowcasting
- arxiv url: http://arxiv.org/abs/2412.01091v2
- Date: Tue, 03 Dec 2024 03:04:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:45:28.258301
- Title: DuoCast: Duo-Probabilistic Meteorology-Aware Model for Extended Precipitation Nowcasting
- Title(参考訳): DuoCast: 拡張降雨予報のための二重確率気象モデル
- Authors: Penghui Wen, Lei Bai, Mengwei He, Patrick Filippi, Feng Zhang, Thomas Francis Bishop, Zhiyong Wang, Kun Hu,
- Abstract要約: DuoCastは、幅広い気象の進化とマイクロスケールの変動に対処するために設計された気象モデルである。
4つの公開ベンチマークの実験は、DuoCastの有効性を示し、最先端の手法よりも優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 22.320723246443332
- License:
- Abstract: Recently, extended short-term precipitation nowcasting struggles with decreasing precision because of insufficient consideration of meteorological knowledge, such as weather fronts which significantly influence precipitation intensity, duration, and spatial distribution. Therefore, in this paper, we present DuoCast, a novel dual-probabilistic meteorology-aware model designed to address both broad weather evolution and micro-scale fluctuations using two diffusion models, PrecipFlow and MicroDynamic, respectively. Our PrecipFlow model captures evolution trends through an Extreme Precipitation-Aware Encoder (EPA-Encoder), which includes AirConvolution and FrontAttention blocks to process two levels of precipitation data: general and extreme. The output conditions a UNet-based diffusion to produce prediction maps enriched with weather front information. The MicroDynamic model further refines the results to capture micro-scale variability. Extensive experiments on four public benchmarks demonstrate the effectiveness of our DuoCast, achieving superior performance over state-of-the-art methods. Our code is available at https://github.com/ph-w2000/DuoCast.
- Abstract(参考訳): 近年,降水強度,持続時間,空間分布に顕著な影響を及ぼす気象予報など,気象知識の考慮が不十分なため,短期降水量減少に苦慮している。
そこで本稿では,2つの拡散モデルである PrecipFlow と MicroDynamic を用いて,広範気象の進化とマイクロスケールの変動に対処するために設計された,新しい二重確率気象対応モデルである DuoCast を提案する。
私たちのPrecipFlowモデルは、AirConvolutionとFrontAttentionブロックを含むEPA-Encoder(Extreme Precipitation-Aware Encoder)を通じて進化傾向を捉え、一般的な降水量と極端な降水量の2つのレベルを処理する。
出力条件は、天気予報情報に富んだ予測マップを生成するためのUNetベースの拡散である。
MicroDynamicモデルは、その結果をさらに洗練して、マイクロスケールの変数をキャプチャする。
4つの公開ベンチマークに関する大規模な実験は、DuoCastの有効性を示し、最先端の手法よりも優れたパフォーマンスを実現している。
私たちのコードはhttps://github.com/ph-w2000/DuoCast.comで公開されています。
関連論文リスト
- Precipitation Nowcasting Using Diffusion Transformer with Causal Attention [3.9468501770612576]
現在のディープラーニング手法は、条件と予測結果の効果的な依存関係を確立するのに不足している。
因果アテンションモデルを用いた拡散変圧器を用いた降雨キャスティングを提案する。
論文 参考訳(メタデータ) (2024-10-17T08:10:41Z) - Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling [19.340636269420692]
ストームスケール対流許容モデル(CAM)は雷雨とメソスケール対流システムの進化を予測する重要なツールである。
深層学習モデルは、これまでのところ、kmスケールの大気シミュレーションでは十分には証明されていない。
我々は,高分解能高速リフレッシュ(HRRR)モデル-NOAAの最先端3km動作CAMをエミュレートしたStormCastと呼ばれる生成拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-08-20T15:56:01Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
本研究では,拡散モデルに基づく最初の実世界の画像デライニングパラダイムであるRainDiffを提案する。
安定的で非敵対的なサイクル一貫性のあるアーキテクチャを導入し、トレーニングをエンドツーエンドで行えます。
また,複数の降雨の先行学習によって条件付けられた拡散生成過程を通じて,所望の出力を洗練する劣化条件拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-01-23T13:34:01Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
本稿では,降雨層に適合する動的降雨発生器を用いた半教師付きビデオデレーシング手法を提案する。
具体的には、1つのエミッションモデルと1つのトランジションモデルから成り、空間的物理的構造と時系列の雨の連続的な変化を同時にエンコードする。
ラベル付き合成およびラベルなしの実データのために、それらの基礎となる共通知識を十分に活用するために、様々な先行フォーマットが設計されている。
論文 参考訳(メタデータ) (2021-03-14T14:28:57Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。