論文の概要: Precipitation nowcasting with generative diffusion models
- arxiv url: http://arxiv.org/abs/2308.06733v2
- Date: Tue, 5 Sep 2023 11:18:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 03:37:02.834496
- Title: Precipitation nowcasting with generative diffusion models
- Title(参考訳): 生成拡散モデルによる降水流速予測
- Authors: Andrea Asperti, Fabio Merizzi, Alberto Paparella, Giorgio Pedrazzi,
Matteo Angelinelli and Stefano Colamonaco
- Abstract要約: 降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years traditional numerical methods for accurate weather prediction
have been increasingly challenged by deep learning methods. Numerous historical
datasets used for short and medium-range weather forecasts are typically
organized into a regular spatial grid structure. This arrangement closely
resembles images: each weather variable can be visualized as a map or, when
considering the temporal axis, as a video. Several classes of generative
models, comprising Generative Adversarial Networks, Variational Autoencoders,
or the recent Denoising Diffusion Models have largely proved their
applicability to the next-frame prediction problem, and is thus natural to test
their performance on the weather prediction benchmarks. Diffusion models are
particularly appealing in this context, due to the intrinsically probabilistic
nature of weather forecasting: what we are really interested to model is the
probability distribution of weather indicators, whose expected value is the
most likely prediction.
In our study, we focus on a specific subset of the ERA-5 dataset, which
includes hourly data pertaining to Central Europe from the years 2016 to 2021.
Within this context, we examine the efficacy of diffusion models in handling
the task of precipitation nowcasting. Our work is conducted in comparison to
the performance of well-established U-Net models, as documented in the existing
literature. Our proposed approach of Generative Ensemble Diffusion (GED)
utilizes a diffusion model to generate a set of possible weather scenarios
which are then amalgamated into a probable prediction via the use of a
post-processing network. This approach, in comparison to recent deep learning
models, substantially outperformed them in terms of overall performance.
- Abstract(参考訳): 近年,深層学習法によって,正確な気象予報のための従来の数値的手法が求められている。
短距離および中距離の天気予報に用いられる多くの歴史的データセットは、通常、通常の空間格子構造に整理される。
この配置は画像によく似ており、それぞれの気象変動を地図として、あるいは時間軸をビデオとして考えるときに、可視化することができる。
生成逆ネットワーク、変分オートエンコーダ、あるいは最近の変分拡散モデルを含むいくつかの生成モデルクラスは、主に次のフレーム予測問題に適用できることを証明しており、そのため天気予報ベンチマークでその性能をテストするのが自然である。
気象予測の本質的な確率的性質から、拡散モデルは特にこの文脈で魅力的である:我々が本当に関心を持っているのは、気象指標の確率分布であり、その予測値が最も高い確率である。
本研究では,2016年から2021年までの中央ヨーロッパに関する時間データを含む,ERA-5データセットの特定のサブセットに着目した。
そこで本研究では,降水処理における拡散モデルの有効性について検討した。
本研究は,既存の文献に記録されているような,確立されたU-Netモデルの性能と比較したものである。
提案手法は, 拡散モデルを用いて, 気象シナリオのセットを生成し, 処理後ネットワークを用いて予測可能な予測に融合する手法である。
このアプローチは、最近のディープラーニングモデルと比較して、全体的なパフォーマンスにおいて、かなり優れています。
関連論文リスト
- WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
我々は,地球近傍の地表面観測から得られた気象予報のための新しいベンチマークデータセットであるWeatherRealを紹介する。
本稿では,データセットの基盤となる情報源と処理手法を詳述するとともに,超局地的・極端な気象観測におけるその場観測の利点について述べる。
私たちの研究は、AIベースの天気予報研究を、よりアプリケーション中心で運用対応のアプローチへと進めることを目的としています。
論文 参考訳(メタデータ) (2024-09-14T08:53:46Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
本稿では,時系列予測における対実生成の新たな問題を定式化し,ForecastCFと呼ばれるアルゴリズムを提案する。
ForecastCFは、勾配に基づく摂動を元の時系列に適用することで、この問題を解決する。
以上の結果から,ForecastCFは,逆ファクト的妥当性とデータ多様体の近接性の観点から,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-10-12T08:51:59Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
我々はNWPモデルと意思決定支援の「理想的な」予測とのギャップを埋める方法について述べる。
本研究では,各数値モデルの誤差プロファイルの学習にQuantile Regression Forestsを使用し,これを経験から得られた確率分布を予測に適用する。
第2に、これらの確率予測を量子平均化(quantile averaging)を用いて組み合わせ、第3に、集合量子化の間で補間して完全な予測分布を生成する。
論文 参考訳(メタデータ) (2020-05-06T16:46:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。