論文の概要: Revisiting Absence withSymptoms that *T* Show up Decades Later to Recover Empty Categories
- arxiv url: http://arxiv.org/abs/2412.01109v1
- Date: Mon, 02 Dec 2024 04:30:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:04.816658
- Title: Revisiting Absence withSymptoms that *T* Show up Decades Later to Recover Empty Categories
- Title(参考訳): Symptomsで見直す *T* その後10年でEmptyカテゴリをリカバリする
- Authors: Emily Chen, Nicholas Huang, Casey Robinson, Kevin Xu, Zihao Huang, Jungyeul Park,
- Abstract要約: 我々は、言語文脈情報を利用したルールベースのアプローチを中国語に拡張することに注力する。
言語列列列モデルを用いてニューラル実験を行い、英語、中国語、韓国語のヌル要素を復元する。
著者の知識を最大限に活用するために、3つの異なる言語のヌル要素を探索し、初めて比較した。
- 参考スコア(独自算出の注目度): 3.0046239913326422
- License:
- Abstract: This paper explores null elements in English, Chinese, and Korean Penn treebanks. Null elements contain important syntactic and semantic information, yet they have typically been treated as entities to be removed during language processing tasks, particularly in constituency parsing. Thus, we work towards the removal and, in particular, the restoration of null elements in parse trees. We focus on expanding a rule-based approach utilizing linguistic context information to Chinese, as rule based approaches have historically only been applied to English. We also worked to conduct neural experiments with a language agnostic sequence-to-sequence model to recover null elements for English (PTB), Chinese (CTB) and Korean (KTB). To the best of the authors' knowledge, null elements in three different languages have been explored and compared for the first time. In expanding a rule based approach to Chinese, we achieved an overall F1 score of 80.00, which is comparable to past results in the CTB. In our neural experiments we achieved F1 scores up to 90.94, 85.38 and 88.79 for English, Chinese, and Korean respectively with functional labels.
- Abstract(参考訳): 本稿では, 英語, 中国語, 韓国の木バンクにおけるヌル要素について検討する。
ヌル要素は重要な構文情報や意味情報を含んでいるが、言語処理タスク、特に選挙区解析において削除されるエンティティとして扱われることが多い。
このように、我々は削除、特にパースツリーにおけるヌル要素の復元に取り組みます。
ルールベースのアプローチは歴史的に英語にのみ適用されてきたため、言語文脈情報を利用したルールベースのアプローチを中国語に拡張することに注力する。
また、言語に依存しないシーケンス・ツー・シーケンスモデルを用いて、英語(PTB)、中国語(CTB)、韓国語(KTB)のヌル要素を復元する神経実験を行った。
著者の知識を最大限に活用するために、3つの異なる言語のヌル要素を探索し、初めて比較した。
ルールベースのアプローチを中国語に拡張することで、総合F1スコアは80.00となり、CTBの過去の結果に匹敵する結果となった。
神経実験では、F1スコアは英語、中国語、韓国語でそれぞれ90.94、85.38、88.79と機能ラベルで達成しました。
関連論文リスト
- When Does Classical Chinese Help? Quantifying Cross-Lingual Transfer in Hanja and Kanbun [48.07219104902607]
古典中国語から漢語・漢文への言語間移動可能性の仮定を疑問視する。
実験の結果,漢文で書かれた古代朝鮮語文書の言語モデル性能に対する古典中国語データセットの影響は最小限であった。
論文 参考訳(メタデータ) (2024-11-07T15:59:54Z) - Discourse Representation Structure Parsing for Chinese [8.846860617823005]
本研究では,中国語意味表現のためのラベル付きデータがない場合の中国語意味解析の実現可能性について検討する。
そこで本研究では,中国語意味解析のためのテストスイートを提案し,解析性能の詳細な評価を行う。
実験の結果,中国語の意味解析の難易度は,主に副詞が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-06-16T09:47:45Z) - Shuo Wen Jie Zi: Rethinking Dictionaries and Glyphs for Chinese Language
Pre-training [50.100992353488174]
辞書知識と漢字の構造を持つ中国語PLMの意味理解能力を高める新しい学習パラダイムであるCDBERTを紹介する。
我々はCDBERTの2つの中核モジュールを Shuowen と Jiezi と名付け、そこで Shuowen は中国語辞書から最も適切な意味を取り出す過程を指す。
本パラダイムは,従来の中国語PLMのタスク間における一貫した改善を実証する。
論文 参考訳(メタデータ) (2023-05-30T05:48:36Z) - WYWEB: A NLP Evaluation Benchmark For Classical Chinese [10.138128038929237]
古典中国語における9つのNLPタスクからなるWYWEB評価ベンチマークを紹介する。
我々は、このベンチマークで苦労している既存の事前学習言語モデルを評価する。
論文 参考訳(メタデータ) (2023-05-23T15:15:11Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - SLING: Sino Linguistic Evaluation of Large Language Models [34.42512869432145]
Sling (Sino linguistics) は、中国語における38Kの最小文対を9つの高水準言語現象に分類する。
Sling 上で 18 個の事前訓練された単言語 (BERT-base-zh など) とマルチ言語 (mT5 や XLM など) の言語モデルをテストする。
実験の結果, LMの平均精度は人的性能(69.7%対97.1%)よりはるかに低いが, BERT-base-zhは試験されたLMの最大精度(84.8%)を達成していることがわかった。
論文 参考訳(メタデータ) (2022-10-21T02:29:39Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
COLDatasetは、37kの注釈付き文を持つ中国の攻撃的言語データセットである。
また、人気のある中国語モデルの出力攻撃性を研究するために、textscCOLDetectorを提案する。
我々の資源と分析は、中国のオンラインコミュニティを解毒し、生成言語モデルの安全性を評価することを目的としている。
論文 参考訳(メタデータ) (2022-01-16T11:47:23Z) - Monolingual and Cross-Lingual Acceptability Judgments with the Italian
CoLA corpus [2.418273287232718]
ItaCoLAコーパスは,受理性判定を伴う約1万文を含む。
また、多言語トランスフォーマーに基づくアプローチが、微調整中に2つの言語で文を使うことのメリットを評価できるかを評価することを目的とした、最初の言語間実験も提示する。
論文 参考訳(メタデータ) (2021-09-24T16:18:53Z) - SHUOWEN-JIEZI: Linguistically Informed Tokenizers For Chinese Language
Model Pretraining [48.880840711568425]
事前学習された言語モデルの中国語トークン化に対する3つの要因の影響について検討する。
本稿では,発音に基づくトークン化システムであるSHUOWEN (Talk Word) と,グリフに基づくトークン化システムであるJIEZI (Solve Character) の3種類のトークン化手法を提案する。
SHUOWENとJIEZIは、一般的に従来のシングル文字トークンよりも優れた性能を持つ。
論文 参考訳(メタデータ) (2021-06-01T11:20:02Z) - Knowledge Distillation for Multilingual Unsupervised Neural Machine
Translation [61.88012735215636]
unsupervised neural machine translation (UNMT) は、最近、いくつかの言語対に対して顕著な結果を得た。
UNMTは単一の言語ペア間でのみ翻訳することができ、同時に複数の言語ペアに対して翻訳結果を生成することはできない。
本稿では,1つのエンコーダと1つのデコーダを用いて13言語間を翻訳する簡単な手法を実証的に紹介する。
論文 参考訳(メタデータ) (2020-04-21T17:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。