論文の概要: Capsule Graph Neural Networks with EM Routing
- arxiv url: http://arxiv.org/abs/2110.09039v1
- Date: Mon, 18 Oct 2021 06:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-19 17:50:36.228050
- Title: Capsule Graph Neural Networks with EM Routing
- Title(参考訳): EMルーティングを用いたカプセルグラフニューラルネットワーク
- Authors: Yu Lei, Jing Zhang
- Abstract要約: 本稿では、EMルーティング機構(CapsGNNEM)を用いて、高品質なグラフ埋め込みを生成する新しいCapsule Graph Neural Networkを提案する。
多くの実世界のグラフデータセットに対する実験結果から、提案したCapsGNNEMはグラフ分類タスクにおいて9つの最先端モデルより優れていることが示された。
- 参考スコア(独自算出の注目度): 8.632437524560133
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To effectively classify graph instances, graph neural networks need to have
the capability to capture the part-whole relationship existing in a graph. A
capsule is a group of neurons representing complicated properties of entities,
which has shown its advantages in traditional convolutional neural networks.
This paper proposed novel Capsule Graph Neural Networks that use the EM routing
mechanism (CapsGNNEM) to generate high-quality graph embeddings. Experimental
results on a number of real-world graph datasets demonstrate that the proposed
CapsGNNEM outperforms nine state-of-the-art models in graph classification
tasks.
- Abstract(参考訳): グラフインスタンスを効果的に分類するには、グラフニューラルネットワークはグラフに存在する部分と全体の関係をキャプチャする能力を持つ必要がある。
カプセルは、実体の複雑な特性を表すニューロンのグループであり、従来の畳み込みニューラルネットワークにおいてその利点を示している。
本稿では,EMルーティング機構(CapsGNNEM)を用いて高品質なグラフ埋め込みを生成する新しいカプセルグラフニューラルネットワークを提案する。
多くの実世界のグラフデータセットにおける実験結果は、グラフ分類タスクにおいて、提案手法が9つの最先端モデルを上回ることを示している。
関連論文リスト
- Graph Reasoning Networks [9.18586425686959]
Graph Reasoning Networks (GRNs) は、グラフ表現と学習したグラフ表現の長所と、微分可能満足度解法に基づく推論モジュールを組み合わせるための新しいアプローチである。
実世界のデータセットの結果は、GNNに匹敵するパフォーマンスを示している。
合成データセットの実験は、新しく提案された手法の可能性を示している。
論文 参考訳(メタデータ) (2024-07-08T10:53:49Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
グラフニューラルネットワーク(GNN)は、グラフ表現学習の先駆けとなった。
本研究では,特徴学習理論の文脈におけるグラフ畳み込みの役割について検討する。
論文 参考訳(メタデータ) (2023-06-24T10:21:11Z) - Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN)は、グラフ補完のためのニューラルシンボリックなフレームワークである。
KeGNNは、知識強化レイヤを積み重ねた基盤としてグラフニューラルネットワークで構成されている。
我々はKeGNNを、最先端のグラフニューラルネットワーク、グラフ畳み込みネットワーク、グラフ注意ネットワークの2つと組み合わせてインスタンス化する。
論文 参考訳(メタデータ) (2023-03-27T07:53:43Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Spiking Graph Convolutional Networks [19.36064180392385]
SpikingGCNは、GCNの埋め込みとSNNの生体忠実性特性を統合することを目的としたエンドツーエンドフレームワークである。
ニューロモルフィックチップ上でのスパイキングGCNは、グラフデータ解析にエネルギー効率の明確な利点をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-05T16:44:36Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - An Energy-Based View of Graph Neural Networks [0.0]
グラフニューラルネットワークは、グラフ構造化データを扱うニューラルネットワークの一般的な変種である。
本稿では,特徴量と隣接行列を同時に生成するための新しい手法を提案する。
本手法はロバスト性を改善しつつ,同等の判別性能を得る。
論文 参考訳(メタデータ) (2021-04-27T21:54:30Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - Hierarchical Graph Capsule Network [78.4325268572233]
ノード埋め込みを共同で学習し,グラフ階層を抽出できる階層型グラフカプセルネットワーク(HGCN)を提案する。
階層的表現を学ぶために、HGCNは下層カプセル(部分)と高層カプセル(全体)の間の部分的関係を特徴付ける。
論文 参考訳(メタデータ) (2020-12-16T04:13:26Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。