Siamese Machine Unlearning with Knowledge Vaporization and Concentration
- URL: http://arxiv.org/abs/2412.01207v1
- Date: Mon, 02 Dec 2024 07:19:49 GMT
- Title: Siamese Machine Unlearning with Knowledge Vaporization and Concentration
- Authors: Songjie Xie, Hengtao He, Shenghui Song, Jun Zhang, Khaled B. Letaief,
- Abstract summary: We propose the concepts of knowledge vaporization and concentration to selectively erase learned knowledge from specific data points.<n>Our proposed Siamese unlearning method does not require additional memory overhead and full access to the remaining dataset.
- Score: 23.796344455232227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In response to the practical demands of the ``right to be forgotten" and the removal of undesired data, machine unlearning emerges as an essential technique to remove the learned knowledge of a fraction of data points from trained models. However, existing methods suffer from limitations such as insufficient methodological support, high computational complexity, and significant memory demands. In this work, we propose the concepts of knowledge vaporization and concentration to selectively erase learned knowledge from specific data points while maintaining representations for the remaining data. Utilizing the Siamese networks, we exemplify the proposed concepts and develop an efficient method for machine unlearning. Our proposed Siamese unlearning method does not require additional memory overhead and full access to the remaining dataset. Extensive experiments conducted across multiple unlearning scenarios showcase the superiority of Siamese unlearning over baseline methods, illustrating its ability to effectively remove knowledge from forgetting data, enhance model utility on remaining data, and reduce susceptibility to membership inference attacks.
Related papers
- Unlearning through Knowledge Overwriting: Reversible Federated Unlearning via Selective Sparse Adapter [35.65566527544619]
Federated learning is a promising paradigm for privacy-preserving collaborative model training.
We propose FUSED, which first identifies critical layers by analyzing each layer's sensitivity to knowledge.
adapters are trained without altering the original parameters, overwriting the unlearning knowledge with the remaining knowledge.
arXiv Detail & Related papers (2025-02-28T04:35:26Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models.
We propose the RESTOR framework for machine unlearning based on the following dimensions.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - Edge Unlearning is Not "on Edge"! An Adaptive Exact Unlearning System on Resource-Constrained Devices [26.939025828011196]
The right to be forgotten mandates that machine learning models enable the erasure of a data owner's data and information from a trained model.
We propose a Constraint-aware Adaptive Exact Unlearning System at the network Edge (CAUSE) to enable exact unlearning on resource-constrained devices.
arXiv Detail & Related papers (2024-10-14T03:28:09Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Machine Unlearning Fails to Remove Data Poisoning Attacks [20.495836283745618]
In addition to complying with data deletion requests, one often-cited potential application for unlearning methods is to remove the effects of training on poisoned data.
We experimentally demonstrate that, while existing unlearning methods have been demonstrated to be effective in a number of evaluation settings, they fail to remove the effects of data poisoning.
arXiv Detail & Related papers (2024-06-25T02:05:29Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Efficient Knowledge Deletion from Trained Models through Layer-wise
Partial Machine Unlearning [2.3496568239538083]
This paper introduces a novel class of machine unlearning algorithms.
First method is partial amnesiac unlearning, integration of layer-wise pruning with amnesiac unlearning.
Second method assimilates layer-wise partial-updates into label-flipping and optimization-based unlearning.
arXiv Detail & Related papers (2024-03-12T12:49:47Z) - Dataset Condensation Driven Machine Unlearning [0.0]
Current trend in data regulation requirements and privacy-preserving machine learning has emphasized the importance of machine unlearning.
We propose new dataset condensation techniques and an innovative unlearning scheme that strikes a balance between machine unlearning privacy, utility, and efficiency.
We present a novel and effective approach to instrumenting machine unlearning and propose its application in defending against membership inference and model inversion attacks.
arXiv Detail & Related papers (2024-01-31T21:48:25Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Class-wise Federated Unlearning: Harnessing Active Forgetting with Teacher-Student Memory Generation [11.638683787598817]
We propose a neuro-inspired federated unlearning framework based on active forgetting.
Our framework distinguishes itself from existing methods by utilizing new memories to overwrite old ones.
Our method achieves satisfactory unlearning completeness against backdoor attacks.
arXiv Detail & Related papers (2023-07-07T03:07:26Z) - Learning with Recoverable Forgetting [77.56338597012927]
Learning wIth Recoverable Forgetting explicitly handles the task- or sample-specific knowledge removal and recovery.
Specifically, LIRF brings in two innovative schemes, namely knowledge deposit and withdrawal.
We conduct experiments on several datasets, and demonstrate that the proposed LIRF strategy yields encouraging results with gratifying generalization capability.
arXiv Detail & Related papers (2022-07-17T16:42:31Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.