UniFault: A Fault Diagnosis Foundation Model from Bearing Data
- URL: http://arxiv.org/abs/2504.01373v1
- Date: Wed, 02 Apr 2025 05:34:27 GMT
- Title: UniFault: A Fault Diagnosis Foundation Model from Bearing Data
- Authors: Emadeldeen Eldele, Mohamed Ragab, Xu Qing, Edward, Zhenghua Chen, Min Wu, Xiaoli Li, Jay Lee,
- Abstract summary: Existing machine fault diagnosis models are operation-specific with limited generalization across diverse datasets.<n>We introduce UniFault, a foundation model for fault diagnosis that systematically addresses these issues.<n>UniFault is pretrained on over 9 billion data points spanning diverse FD datasets, enabling superior few-shot performance.
- Score: 17.331366274926758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine fault diagnosis (FD) is a critical task for predictive maintenance, enabling early fault detection and preventing unexpected failures. Despite its importance, existing FD models are operation-specific with limited generalization across diverse datasets. Foundation models (FM) have demonstrated remarkable potential in both visual and language domains, achieving impressive generalization capabilities even with minimal data through few-shot or zero-shot learning. However, translating these advances to FD presents unique hurdles. Unlike the large-scale, cohesive datasets available for images and text, FD datasets are typically smaller and more heterogeneous, with significant variations in sampling frequencies and the number of channels across different systems and applications. This heterogeneity complicates the design of a universal architecture capable of effectively processing such diverse data while maintaining robust feature extraction and learning capabilities. In this paper, we introduce UniFault, a foundation model for fault diagnosis that systematically addresses these issues. Specifically, the model incorporates a comprehensive data harmonization pipeline featuring two key innovations. First, a unification scheme transforms multivariate inputs into standardized univariate sequences while retaining local inter-channel relationships. Second, a novel cross-domain temporal fusion strategy mitigates distribution shifts and enriches sample diversity and count, improving the model generalization across varying conditions. UniFault is pretrained on over 9 billion data points spanning diverse FD datasets, enabling superior few-shot performance. Extensive experiments on real-world FD datasets demonstrate that UniFault achieves SoTA performance, setting a new benchmark for fault diagnosis models and paving the way for more scalable and robust predictive maintenance solutions.
Related papers
- Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.<n>We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - FD-LLM: Large Language Model for Fault Diagnosis of Machines [20.679299204776527]
This study introduces a novel IFD approach by effectively adapting large language models to numerical data inputs for identifying faults from time-series sensor data.<n>We propose FD-LLM, an LLM framework specifically designed for fault diagnosis by formulating the training of the LLM as a multi-class classification problem.<n>We assess the fault diagnosis capabilities of four open-sourced LLMs based on the FD-LLM framework, and evaluate the models' adaptability and generalizability under various operational conditions.
arXiv Detail & Related papers (2024-12-02T07:36:35Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - COMPILED: Deep Metric Learning for Defect Classification of Threaded Pipe Connections using Multichannel Partially Observed Functional Data [6.688305507010403]
We focus on defect classification where each sample is represented as partially observed multichannel functional data.<n>The available samples for each defect type are limited and imbalanced.<n>We propose an innovative classification approach named as COMPILED based on deep metric learning.
arXiv Detail & Related papers (2024-04-04T09:55:11Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
arXiv Detail & Related papers (2024-01-15T12:51:13Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
In this work, we introduce a novel FL architecture designed to accommodate not only the heterogeneity of data samples, but also the inherent heterogeneity/non-uniformity of data modalities across institutions.
We propose a solution by devising a distributed gradient blending and proximity-aware client weighting strategy tailored for multi-modal FL.
arXiv Detail & Related papers (2024-01-07T23:45:01Z) - FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal
Heterogeneous Federated Learning [37.96957782129352]
We propose a finetuning framework tailored to heterogeneous multi-modal foundation models, called Federated Dual-Aadapter Teacher (Fed DAT)
Fed DAT addresses data heterogeneity by regularizing the client local updates and applying Mutual Knowledge Distillation (MKD) for an efficient knowledge transfer.
To demonstrate its effectiveness, we conduct extensive experiments on four multi-modality FL benchmarks with different types of data heterogeneity.
arXiv Detail & Related papers (2023-08-21T21:57:01Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.