Machine Learning Analysis of Anomalous Diffusion
- URL: http://arxiv.org/abs/2412.01393v1
- Date: Mon, 02 Dec 2024 11:27:26 GMT
- Title: Machine Learning Analysis of Anomalous Diffusion
- Authors: Wenjie Cai, Yi Hu, Xiang Qu, Hui Zhao, Gongyi Wang, Jing Li, Zihan Huang,
- Abstract summary: Review systematically introduces the integration of machine learning techniques for enhanced analysis of anomalous diffusion.
We extensively compare various machine learning methods, including both classical machine learning and deep learning, used for the inference of diffusion parameters and trajectory segmentation.
On the other hand, we outline three primary strategies for representing anomalous diffusion, including the combination of predefined features, the feature vector from the penultimate layer of neural network, and the latent representation from the autoencoder.
- Score: 7.073855594462542
- License:
- Abstract: The rapid advancements in machine learning have made its application to anomalous diffusion analysis both essential and inevitable. This review systematically introduces the integration of machine learning techniques for enhanced analysis of anomalous diffusion, focusing on two pivotal aspects: single trajectory characterization via machine learning and representation learning of anomalous diffusion. We extensively compare various machine learning methods, including both classical machine learning and deep learning, used for the inference of diffusion parameters and trajectory segmentation. Additionally, platforms such as the Anomalous Diffusion Challenge that serve as benchmarks for evaluating these methods are highlighted. On the other hand, we outline three primary strategies for representing anomalous diffusion: the combination of predefined features, the feature vector from the penultimate layer of neural network, and the latent representation from the autoencoder, analyzing their applicability across various scenarios. This investigation paves the way for future research, offering valuable perspectives that can further enrich the study of anomalous diffusion and advance the application of artificial intelligence in statistical physics and biophysics.
Related papers
- A Survey on Diffusion Models for Inverse Problems [110.6628926886398]
We provide an overview of methods that utilize pre-trained diffusion models to solve inverse problems without requiring further training.
We discuss specific challenges and potential solutions associated with using latent diffusion models for inverse problems.
arXiv Detail & Related papers (2024-09-30T17:34:01Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
Disentangled representation learning strives to extract the intrinsic factors within observed data.
We introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias.
This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs.
arXiv Detail & Related papers (2024-02-15T05:07:54Z) - Gramian Angular Fields for leveraging pretrained computer vision models
with anomalous diffusion trajectories [0.9012198585960443]
We present a new data-driven method for working with diffusive trajectories.
This method utilizes Gramian Angular Fields (GAF) to encode one-dimensional trajectories as images.
We leverage two well-established pre-trained computer-vision models, ResNet and MobileNet, to characterize the underlying diffusive regime.
arXiv Detail & Related papers (2023-09-02T17:22:45Z) - Machine-Learning Solutions for the Analysis of Single-Particle Diffusion
Trajectories [0.0]
We provide an overview over recently introduced methods in machine-learning for diffusive time series.
We focus on means to include uncertainty estimates and feature-based approaches, both improving interpretability and providing concrete insight into the learning process of the machine.
arXiv Detail & Related papers (2023-08-18T09:29:29Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Rethinking Bayesian Learning for Data Analysis: The Art of Prior and
Inference in Sparsity-Aware Modeling [20.296566563098057]
Sparse modeling for signal processing and machine learning has been at the focus of scientific research for over two decades.
This article reviews some recent advances in incorporating sparsity-promoting priors into three popular data modeling tools.
arXiv Detail & Related papers (2022-05-28T00:43:52Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Extreme Learning Machine for the Characterization of Anomalous Diffusion
from Single Trajectories [0.0]
I describe a simple approach to tackle the tasks of the AnDi challenge by combining extreme learning machine and feature engineering (AnDi-ELM)
The method reaches satisfactory performance while offering a straightforward implementation and fast training time with limited computing resources.
arXiv Detail & Related papers (2021-05-06T11:56:27Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
We investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network.
Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation.
We introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies.
arXiv Detail & Related papers (2020-08-01T00:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.