論文の概要: MambaU-Lite: A Lightweight Model based on Mamba and Integrated Channel-Spatial Attention for Skin Lesion Segmentation
- arxiv url: http://arxiv.org/abs/2412.01405v1
- Date: Mon, 02 Dec 2024 11:49:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:49:53.411296
- Title: MambaU-Lite: A Lightweight Model based on Mamba and Integrated Channel-Spatial Attention for Skin Lesion Segmentation
- Title(参考訳): MambaU-Lite: Mambaに基づく軽量モデルと皮膚病変分割のための統合チャネル空間注意
- Authors: Thi-Nhu-Quynh Nguyen, Quang-Huy Ho, Duy-Thai Nguyen, Hoang-Minh-Quang Le, Van-Truong Pham, Thi-Thao Tran,
- Abstract要約: 皮膚異常の早期発見は、皮膚がんの診断と治療において重要な役割を担っている。
ハイパフォーマンスを実現することは、高解像度画像が必要であり、個々の病変の境界が不明瞭であることから、依然として大きな課題である。
我々は,400K以上のパラメータと1Gフロップ以上の計算コストを備えた,MambaU-Liteと呼ばれる新しい軽量モデルを導入する。
- 参考スコア(独自算出の注目度): 1.8076316708864304
- License:
- Abstract: Early detection of skin abnormalities plays a crucial role in diagnosing and treating skin cancer. Segmentation of affected skin regions using AI-powered devices is relatively common and supports the diagnostic process. However, achieving high performance remains a significant challenge due to the need for high-resolution images and the often unclear boundaries of individual lesions. At the same time, medical devices require segmentation models to have a small memory foot-print and low computational cost. Based on these requirements, we introduce a novel lightweight model called MambaU-Lite, which combines the strengths of Mamba and CNN architectures, featuring just over 400K parameters and a computational cost of more than 1G flops. To enhance both global context and local feature extraction, we propose the P-Mamba block, a novel component that incorporates VSS blocks along-side multiple pooling layers, enabling the model to effectively learn multiscale features and enhance segmentation performance. We evaluate the model's performance on two skin datasets, ISIC2018 and PH2, yielding promising results. Our source code will be made publicly available at: https://github.com/nqnguyen812/MambaU-Lite.
- Abstract(参考訳): 皮膚異常の早期発見は、皮膚がんの診断と治療において重要な役割を担っている。
AIを用いた皮膚領域の分離は比較的一般的であり、診断プロセスをサポートしている。
しかし、高解像度画像の必要性や、個々の病変の境界が不明瞭であることから、ハイパフォーマンスを実現することは依然として大きな課題である。
同時に医療機器は、小さなメモリフットプリントと計算コストの低いセグメンテーションモデルを必要とする。
これらの要求に基づいて,400K以上のパラメータと1Gフロップ以上の計算コストを備えた,MambaU-Liteという軽量モデルを導入する。
グローバルコンテキストと局所的特徴抽出の両方を強化するため,VSSブロックを複数のプール層に沿って組み込んだ新しいコンポーネントであるP-Mambaブロックを提案し,マルチスケール特徴を効果的に学習し,セグメンテーション性能を向上させる。
このモデルの性能をISIC2018とPH2の2つのスキンデータセットで評価し,有望な結果を得た。
私たちのソースコードは、https://github.com/nqnguyen812/MambaU-Lite.comで公開されます。
関連論文リスト
- MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification [46.111607032455225]
本稿では,Mambaモデルに基づく新しいHSI分類モデル,MambaHSIを提案する。
具体的には,空間的マンバブロック(SpaMB)を設計し,画素レベルの画像全体の長距離相互作用をモデル化する。
スペクトルベクトルを複数のグループに分割し、異なるスペクトル群間の関係をマイニングし、スペクトル特徴を抽出するスペクトルマンバブロック(SpeMB)を提案する。
論文 参考訳(メタデータ) (2025-01-09T03:27:47Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mambaは、新しいステートスペースモデル(SSM)として、自然言語処理やコンピュータビジョンに広く応用されている。
本稿では,MambaとU-Net for SEタスクを統合する革新的なアーキテクチャであるMamba-SEUNetを紹介する。
論文 参考訳(メタデータ) (2024-12-21T13:43:51Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - UltraLight VM-UNet: Parallel Vision Mamba Significantly Reduces Parameters for Skin Lesion Segmentation [2.0555786400946134]
ステートスペースモデル(SSM)は、従来のCNNやTransformerと強力な競合関係にある。
そこで我々はUltraLight Vision Mamba UNet (UltraLight VM-UNet)を提案する。
具体的には、PVM Layer という名前のVision Mamba を並列処理する手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T08:03:42Z) - Integrating Mamba Sequence Model and Hierarchical Upsampling Network for Accurate Semantic Segmentation of Multiple Sclerosis Legion [0.0]
我々は,堅牢で効率的なセグメンテーションタスクに適した新しいアーキテクチャであるMamba HUNetを紹介する。
私たちはまず、HUNetを軽量バージョンに変換し、パフォーマンスの同等性を保ち、この軽量版HUNetをMamba HUNetに統合し、その効率をさらに向上した。
特に多発性硬化症病変のセグメンテーションでは,Mamba HUNetが様々なセグメンテーションタスクで有効であることが示されている。
論文 参考訳(メタデータ) (2024-03-26T06:57:50Z) - LightM-UNet: Mamba Assists in Lightweight UNet for Medical Image
Segmentation [10.563051220050035]
本稿では,軽量なフレームワークとして,Mamba と UNet を統合した Lightweight Mamba UNet (LightM-UNet) を紹介する。
特に、LightM-UNetはResidual Vision Mamba Layerを純粋なMamba方式で利用し、深い意味的特徴を抽出し、長距離空間依存をモデル化する。
2つの実世界の2D/3Dデータセットで実施された実験は、LightM-UNetが既存の最先端の文献を上回っていることを示している。
論文 参考訳(メタデータ) (2024-03-08T12:07:42Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z) - MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion
Segmentation [13.456935850832565]
そこで本研究では,皮膚病変のセグメンテーションにおいて,パラメータと計算複雑性の最小コストで競合性能を実現する軽量モデルを提案する。
我々は、4つのモジュールをU字型アーキテクチャと組み合わせ、MALUNetと呼ばれる軽量な医用画像分割モデルを得る。
UNetと比較して、我々のモデルはmIoUとDSCのメトリクスをそれぞれ2.39%、1.49%改善し、パラメータ数と計算複雑性の44倍と166倍削減した。
論文 参考訳(メタデータ) (2022-11-03T13:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。