Quantization of Visible Light by a Ni$_2$ Molecular Optical Resonator
- URL: http://arxiv.org/abs/2412.01444v2
- Date: Mon, 20 Jan 2025 04:18:18 GMT
- Title: Quantization of Visible Light by a Ni$_2$ Molecular Optical Resonator
- Authors: Miao Meng, Ying Ning Tan, Yu Li Zhou, Zi Cong He, Zi Hao Zhong, Jia Zhou, Guang Yuan Zhu, Chun Y. Liu,
- Abstract summary: A dinickel complex (Ni$$) traps and quantizes classical visible light, behaving as an individual quantum system or the Jaynes Cummings molecule.
Our results establish Ni$$ as a robust platform for quantum optical phenomena under ambient conditions.
- Score: 0.43306583591203884
- License:
- Abstract: The quantization of an optical field is a frontier in quantum optics with implications for both fundamental science and technological applications. Here, we demonstrate that a dinickel complex (Ni$_2$) traps and quantizes classical visible light, behaving as an individual quantum system or the Jaynes Cummings molecule.The composite system forms through coherently coupling the two level NiNi charge transfer transition with the local scattering field, which produces nonclassical light featuring photon anti bunching and squeezed states, as verified by a sequence of discrete photonic modes in the incoherent resonance fluorescence. Notably, in this Ni$_2$ system, the collective coupling of N molecule ensembles scales as N, distinct from the Tavis-Cummings model, which allows easy achievement of ultrastrong coupling. This is exemplified by a vacuum Rabi splitting of 1.2 eV at the resonance (3.25 eV) and a normalized coupling rate of 0.18 for the N = 4 ensemble. The resulting quantum light of single photonic modes enables driving the molecule field interaction in cavity free solution, which profoundly modifies the electronic states. Our results establish Ni$_2$ as a robust platform for quantum optical phenomena under ambient conditions, offering new pathways for molecular physics, polaritonic chemistry and quantum information processing.
Related papers
- Quadruply Bonded Mo$_2$ Molecules: An Emitter-Resonator Integrated Quantum System in Free Space [0.43306583591203884]
We show that the quadruply-bonded Mo$$ unit can trap photons of visible light under ambient conditions.
The insights gained from this study advance our understanding in metal-metal bond chemistry, molecular physics and quantum optics.
arXiv Detail & Related papers (2024-12-02T12:43:15Z) - Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model [3.307097167756987]
We study the multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model.
Our work paves the way towards the study of multiple-photon quantum coherent devices.
arXiv Detail & Related papers (2022-04-21T06:09:16Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Rare-Earth Molecular Crystals with Ultra-narrow Optical Linewidths for
Photonic Quantum Technologies [0.0]
We report on europium molecular crystals that exhibit linewidths in the 10s of kHz range, orders of magnitude narrower than other molecular centers.
Results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies.
arXiv Detail & Related papers (2021-05-14T22:19:59Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.