Constant-Overhead Magic State Injection into qLDPC Codes with Error Independence Guarantees
- URL: http://arxiv.org/abs/2505.06981v1
- Date: Sun, 11 May 2025 13:44:10 GMT
- Title: Constant-Overhead Magic State Injection into qLDPC Codes with Error Independence Guarantees
- Authors: Guo Zhang, Yuanye Zhu, Xiao Yuan, Ying Li,
- Abstract summary: We introduce a generic and scalable method for magic state injection into logical qubits encoded in qLDPC codes.<n>A central contribution of this work is a rigorous proof that errors affecting the injected magic states remain independent throughout the procedure.
- Score: 5.090189387045667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magic states are essential yet resource-intensive components for realizing universal fault-tolerant quantum computation. Preparing magic states within emerging quantum low-density parity-check (qLDPC) codes poses additional challenges, due to the complex encoding structures. Here, we introduce a generic and scalable method for magic state injection into arbitrarily selected logical qubits encoded using qLDPC codes. Our approach, based on parallelized code surgery, supports the injection from either physical qubits or low-distance logical qubits. For qLDPC code families with asymptotically constant encoding rates, the method achieves injection into $\Theta(k)$ logical qubits -- where $k$ denotes the logical qubit number of the code -- with only constant qubit overhead and a time complexity of $\tilde{O}(d^2)$, where $d$ is the code distance. A central contribution of this work is a rigorous proof that errors affecting the injected magic states remain independent throughout the procedure. This independence ensures the resilience of logical qubits against interactions with noisy ancillae and preserves the presumption of subsequent magic state distillation protocols. We further support our theoretical results with numerical validation through circuit-level simulations. These findings advance the feasibility of scalable, fault-tolerant universal quantum computing using qLDPC codes, offering a pathway to significantly reduced qubit resource requirements in magic state injection.
Related papers
- Fast correlated decoding of transversal logical algorithms [67.01652927671279]
Quantum error correction (QEC) is required for large-scale computation, but incurs a significant resource overhead.<n>Recent advances have shown that by jointly decoding logical qubits in algorithms composed of logical gates, the number of syndrome extraction rounds can be reduced.<n>Here, we reform the problem of decoding circuits by directly decoding relevant logical operator products as they propagate through the circuit.
arXiv Detail & Related papers (2025-05-19T18:00:00Z) - Experimental Demonstration of Logical Magic State Distillation [62.77974948443222]
We present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer.<n>Our approach makes use of a dynamically reconfigurable architecture to encode and perform quantum operations on many logical qubits in parallel.
arXiv Detail & Related papers (2024-12-19T18:38:46Z) - Magic State Injection on IBM Quantum Processors Above the Distillation Threshold [1.7359033750147501]
This work employs a qubit-efficient rotated heavy-hexagonal surface code for IBM quantum processors.<n>We report error thresholds for both logical bit- and phase-flip errors, of $approx0.37%$ and $approx0.31%$, respectively.<n>Our work demonstrates the potential for realising non-Clifford logical gates by producing high-fidelity logical magic states on IBM quantum devices.
arXiv Detail & Related papers (2024-12-02T12:35:52Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
We demonstrate low-latency feedback with a scalable FPGA decoder integrated into a superconducting quantum processor.
We observe logical error suppression as the number of decoding rounds is increased.
The decoder throughput and latency developed in this work, combined with continued device improvements, unlock the next generation of experiments.
arXiv Detail & Related papers (2024-10-07T17:07:18Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Transversal Injection: Using the Surface Code to Prepare Non-Pauli Eigenstates [37.94431794242543]
Quantum Error Correction (QEC) allows us to use systems with a large number of physical qubits and a favourable logical error rate.
Transversal Injection is a new method of preparing logical non-Pauliigen estates that can be used as resource states for quantum computation.
arXiv Detail & Related papers (2023-12-27T03:32:03Z) - Constant-Overhead Fault-Tolerant Quantum Computation with Reconfigurable
Atom Arrays [5.542275446319411]
We propose a hardware-efficient scheme to perform fault-tolerant quantum computation with high-rate qLDPC codes on reconfigurable atom arrays.
Our work paves the way for explorations of low-overhead quantum computing with qLDPC codes at a practical scale.
arXiv Detail & Related papers (2023-08-16T19:47:17Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Encoding a magic state with beyond break-even fidelity [1.449788466039287]
We propose and implement a scheme to prepare a magic state on a superconducting qubit array using error correction.
We find that our scheme produces better magic states than those we can prepare using the individual qubits of the device.
Our prototype will be invaluable in the future as it can reduce the number of physical qubits needed to produce high-fidelity magic states.
arXiv Detail & Related papers (2023-05-23T01:19:53Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Entanglement Purification with Quantum LDPC Codes and Iterative Decoding [5.5165579223151795]
We use QLDPC codes to distill GHZ states, as the resulting high-fidelity logical GHZ states can interact directly with the code used to perform distributed quantum computing.
Our results apply to larger size GHZ states as well, where we extend our technical result about a measurement property of $3$-qubit GHZ states to construct a scalable GHZ purification protocol.
arXiv Detail & Related papers (2022-10-25T16:42:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.