論文の概要: FastRM: An efficient and automatic explainability framework for multimodal generative models
- arxiv url: http://arxiv.org/abs/2412.01487v2
- Date: Sun, 23 Feb 2025 14:35:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 22:36:55.608375
- Title: FastRM: An efficient and automatic explainability framework for multimodal generative models
- Title(参考訳): FastRM:マルチモーダル生成モデルのための効率的かつ自動的な説明可能性フレームワーク
- Authors: Gabriela Ben-Melech Stan, Estelle Aflalo, Man Luo, Shachar Rosenman, Tiep Le, Sayak Paul, Shao-Yen Tseng, Vasudev Lal,
- Abstract要約: FastRMは、LVLMの説明可能な関連性マップを効率的に予測する手法である。
FastRMは計算時間を99.8%削減し、メモリフットプリントを44.4%削減した。
- 参考スコア(独自算出の注目度): 10.184567639685321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision Language Models (LVLMs) have demonstrated remarkable reasoning capabilities over textual and visual inputs. However, these models remain prone to generating misinformation. Identifying and mitigating ungrounded responses is crucial for developing trustworthy AI. Traditional explainability methods such as gradient-based relevancy maps, offer insight into the decision process of models, but are often computationally expensive and unsuitable for real-time output validation. In this work, we introduce FastRM, an efficient method for predicting explainable Relevancy Maps of LVLMs. Furthermore, FastRM provides both quantitative and qualitative assessment of model confidence. Experimental results demonstrate that FastRM achieves a 99.8% reduction in computation time and a 44.4% reduction in memory footprint compared to traditional relevancy map generation. FastRM allows explainable AI to be more practical and scalable, thereby promoting its deployment in real-world applications and enabling users to more effectively evaluate the reliability of model outputs.
- Abstract(参考訳): 大規模視覚言語モデル(LVLM)は、テキスト入力や視覚入力よりも顕著な推論能力を示している。
しかし、これらのモデルは誤った情報を生み出す傾向にある。
信頼に値するAIを開発するには、未解決の回答の特定と緩和が不可欠だ。
勾配に基づく関連性マップのような従来の説明可能性の手法は、モデルの決定過程に関する洞察を提供するが、しばしば計算コストが高く、リアルタイムの出力検証には適さない。
本稿では,LVLMの関連性マップを効率的に予測する手法であるFastRMを紹介する。
さらに、FastRMはモデルの信頼性を定量的かつ定性的に評価する。
実験の結果、FastRMは計算時間を99.8%削減し、メモリフットプリントを44.4%削減した。
FastRMは、説明可能なAIをより実用的でスケーラブルにすることで、現実世界のアプリケーションへのデプロイメントを促進し、モデル出力の信頼性をより効果的に評価することを可能にする。
関連論文リスト
- R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
プロセス・リワード・モデル(Process Reward Models, PRM)は、各推論ステップを評価することによって、有望なソリューションとして登場した。
既存のPRMは評価スコアを直接出力し、学習効率と評価精度の両方を制限する。
推論駆動プロセスリワードモデリング(R-PRM)を提案する。
R-PRMは限られたアノテーションからシードデータを生成し、効果的にモデルの推論能力をブートストラップします。
論文 参考訳(メタデータ) (2025-03-27T09:23:08Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
大きな言語モデル(LLM)は、不一致の自己認識のためにしばしば幻覚する。
既存のアプローチは、不確実性推定やクエリの拒否を通じて幻覚を緩和する。
高速かつ低速な推論システムを統合するための明示的知識境界モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-04T03:16:02Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRM) は、推論プロセスにおける中間エラーを特定し、緩和することを目的としている。
我々は,モンテカルロ (MC) 推定とLarge Language Models (LLM) を効果的に統合するコンセンサスフィルタリング機構を開発した。
私たちは、既存のオープンソース代替品よりも優れた、最先端のPRMを新たにリリースしています。
論文 参考訳(メタデータ) (2025-01-13T13:10:16Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
本稿では,最小限の精度で説明可能性を向上させる手法を提案する。
我々は,AI技術を利用してノードを推定する新しい手法を開発した。
我々の研究は、統計的方法論が説明可能なAIを前進させる上で重要な役割を担っている。
論文 参考訳(メタデータ) (2024-06-16T14:43:01Z) - ELAD: Explanation-Guided Large Language Models Active Distillation [16.243249111524403]
LLM(Large Language Models)のデプロイメントと適用は、そのメモリ非効率性、計算要求、API推論の高コストによって妨げられている。
LLMの能力をより小さなモデルに伝達する伝統的な蒸留法は、知識が十分に伝達されているかどうかを判断できないことが多い。
本稿では,アノテーションコストとモデル性能のバランスを最適化するために,アクティブラーニング戦略を用いた説明誘導型ELAD(Explaination-Guided LLMs Active Distillation)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-20T15:47:59Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
本稿では,外部観測から推論プロセスを取り除き,トークン消費量を大幅に削減するモジュラーパラダイムReWOOを提案する。
マルチステップ推論ベンチマークであるHotpotQAにおいて,ReWOOは5倍のトークン効率と4%の精度向上を実現している。
本稿では,175B GPT3.5から7B LLaMAへの推論能力をオフロードし,真に効率的でスケーラブルなALMシステムの可能性を示す。
論文 参考訳(メタデータ) (2023-05-23T00:16:48Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
解釈可能性のアプローチは、ユーザが待つことなく、実行可能な洞察を提供するべきです。
本稿では,グローバルレベルとローカルレベルの両方で特徴的重要性のスコアを迅速に提供する解釈可能性アプローチである,アクセレーションモデル非依存説明(AcME)を提案する。
AcMEは機能ランキングを計算しますが、機能値の変化がモデル予測にどのように影響するかを評価するために、What-if分析ツールも提供しています。
論文 参考訳(メタデータ) (2021-12-23T15:18:13Z) - Who Explains the Explanation? Quantitatively Assessing Feature
Attribution Methods [0.0]
本稿では,説明の忠実度を定量化するための新しい評価指標であるフォーカス(Focus)を提案する。
ランダム化実験によって測定値のロバスト性を示し、次にFocusを用いて3つの一般的な説明可能性手法を評価し比較する。
実験の結果,LRPとGradCAMは一貫性があり信頼性が高いことがわかった。
論文 参考訳(メタデータ) (2021-09-28T07:10:24Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。