Understanding complex crowd dynamics with generative neural simulators
- URL: http://arxiv.org/abs/2412.01491v2
- Date: Tue, 03 Dec 2024 16:01:54 GMT
- Title: Understanding complex crowd dynamics with generative neural simulators
- Authors: Koen Minartz, Fleur Hendriks, Simon Martinus Koop, Alessandro Corbetta, Vlado Menkovski,
- Abstract summary: We use our data-driven Neural Crowd Simulator (NeCS) to train on large-scale data and validate against key statistical features of crowd dynamics.<n>We show that we can perform effective surrogate crowd dynamics experiments without training on specific scenarios.<n>We also uncover the vision-guided and topological nature of N-body interactions.
- Score: 43.02251339321427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the dynamics of pedestrian crowds is an outstanding challenge crucial for designing efficient urban infrastructure and ensuring safe crowd management. To this end, both small-scale laboratory and large-scale real-world measurements have been used. However, these approaches respectively lack statistical resolution and parametric controllability, both essential to discovering physical relationships underlying the complex stochastic dynamics of crowds. Here, we establish an investigation paradigm that offers laboratory-like controllability, while ensuring the statistical resolution of large-scale real-world datasets. Using our data-driven Neural Crowd Simulator (NeCS), which we train on large-scale data and validate against key statistical features of crowd dynamics, we show that we can perform effective surrogate crowd dynamics experiments without training on specific scenarios. We not only reproduce known experimental results on pairwise avoidance, but also uncover the vision-guided and topological nature of N-body interactions. These findings show how virtual experiments based on neural simulation enable data-driven scientific discovery.
Related papers
- Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)
We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.
Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Learning Continuous Network Emerging Dynamics from Scarce Observations
via Data-Adaptive Stochastic Processes [11.494631894700253]
We introduce ODE Processes for Network Dynamics (NDP4ND), a new class of processes governed by data-adaptive network dynamics.
We show that the proposed method has excellent data and computational efficiency, and can adapt to unseen network emerging dynamics.
arXiv Detail & Related papers (2023-10-25T08:44:05Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
We present a new probabilistic machine learning framework called GFlowNets.
GFlowNets can be applied in the modeling, hypotheses generation and experimental design stages of the experimental science loop.
We argue that GFlowNets can become a valuable tool for AI-driven scientific discovery.
arXiv Detail & Related papers (2023-02-01T17:29:43Z) - A Deep Learning Approach to Analyzing Continuous-Time Systems [20.89961728689037]
We show that deep learning can be used to analyze complex processes.
Our approach relaxes standard assumptions that are implausible for many natural systems.
We demonstrate substantial improvements on behavioral and neuroimaging data.
arXiv Detail & Related papers (2022-09-25T03:02:31Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification.
We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
arXiv Detail & Related papers (2022-05-25T07:54:10Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
One of the major challenges is to infer the underlying causes, which generate the perceived data stream.
Success of machine learning based predictive models requires massive annotated data for model training.
Our experiments on both synthetic and real-world datasets exhibit that the proposed ST-PCNN with active learning converges to optimal accuracy with substantially fewer instances.
arXiv Detail & Related papers (2021-08-11T18:05:55Z) - Complete CVDL Methodology for Investigating Hydrodynamic Instabilities [0.49873153106566565]
In fluid dynamics, one of the most important research fields is hydrodynamic instabilities and their evolution in different flow regimes.
Currently, three main methods are used for understanding such phenomenon - namely analytical models, experiments and simulations.
We claim and demonstrate that a major portion of this research effort could and should be analysed using recent breakthrough advancements in the field of Computer Vision with Deep Learning (CVDL, or Deep Computer-Vision)
Specifically, we focus in this research on one of the most representative instabilities, the Rayleigh-Taylor one, simulate its behaviour and create an open-sourced state-of-the
arXiv Detail & Related papers (2020-04-03T13:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.