論文の概要: Adversarial Attacks on Hyperbolic Networks
- arxiv url: http://arxiv.org/abs/2412.01495v1
- Date: Mon, 02 Dec 2024 13:48:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:49:18.852822
- Title: Adversarial Attacks on Hyperbolic Networks
- Title(参考訳): 双曲型ネットワークにおける敵攻撃
- Authors: Max van Spengler, Jan Zahálka, Pascal Mettes,
- Abstract要約: 本稿では、一般的に用いられているFGMとPGDの対向攻撃に対する双曲的代替法を提案する。
既存のデータセットの解釈可能な総合ベンチマークと実験を通じて、既存の、新しく提案された攻撃がどのように異なるかを示す。
これらのネットワークは異なるタイプの脆弱性に悩まされており、新たに提案された双曲的攻撃はこれらの違いに対処できない。
- 参考スコア(独自算出の注目度): 14.993556473864228
- License:
- Abstract: As hyperbolic deep learning grows in popularity, so does the need for adversarial robustness in the context of such a non-Euclidean geometry. To this end, this paper proposes hyperbolic alternatives to the commonly used FGM and PGD adversarial attacks. Through interpretable synthetic benchmarks and experiments on existing datasets, we show how the existing and newly proposed attacks differ. Moreover, we investigate the differences in adversarial robustness between Euclidean and fully hyperbolic networks. We find that these networks suffer from different types of vulnerabilities and that the newly proposed hyperbolic attacks cannot address these differences. Therefore, we conclude that the shifts in adversarial robustness are due to the models learning distinct patterns resulting from their different geometries.
- Abstract(参考訳): 双曲的深層学習が普及するにつれて、そのような非ユークリッド幾何学の文脈において、敵対的堅牢性の必要性も増す。
そこで本研究では,一般的に用いられているFGMとPGDの対向攻撃に対する双曲的代替法を提案する。
既存のデータセットの解釈可能な総合ベンチマークと実験を通じて、既存の、新しく提案された攻撃がどのように異なるかを示す。
さらに,ユークリッドネットワークと完全双曲ネットワークの対角的ロバスト性の違いについて検討した。
これらのネットワークは異なるタイプの脆弱性に悩まされており、新たに提案された双曲的攻撃はこれらの違いに対処できない。
したがって, 逆方向のロバスト性の変化は, 異なる地形から異なるパターンを学習するモデルに起因すると結論づける。
関連論文リスト
- Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Hyperbolic Face Anti-Spoofing [21.981129022417306]
双曲空間におけるよりリッチな階層的および差別的なスプーフィングキューを学習することを提案する。
単調なFAS学習では、特徴埋め込みはポアンカーボールに投影され、双対対対数回帰層は分類のためにカスケードされる。
双曲空間における消失勾配問題を緩和するために,双曲モデルのトレーニング安定性を高めるために,新しい特徴クリッピング法を提案する。
論文 参考訳(メタデータ) (2023-08-17T17:18:21Z) - Interpretability is a Kind of Safety: An Interpreter-based Ensemble for
Adversary Defense [28.398901783858005]
我々は,強固な防御敵に対するX-Ensembleと呼ばれるインタプリタベースのアンサンブルフレームワークを提案する。
X-エンサンブルはランダムフォレスト(RF)モデルを用いて、準検出器をアンサンブル検出器に結合し、敵のハイブリッド攻撃防御を行う。
論文 参考訳(メタデータ) (2023-04-14T04:32:06Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Resisting Deep Learning Models Against Adversarial Attack
Transferability via Feature Randomization [17.756085566366167]
本研究では,ディープラーニングモデルを対象とした8つの敵攻撃に抵抗する特徴ランダム化に基づく手法を提案する。
本手法は,標的ネットワークを確保でき,敵の攻撃伝達可能性に対して60%以上抵抗することができる。
論文 参考訳(メタデータ) (2022-09-11T20:14:12Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
深層学習システムは、人間の目には認識できないが、モデルが誤分類される可能性がある、人工的な敵の例に弱い。
我々は,オリジナルモデルに対する多様な決定境界を持つディフェンダーモデルを構築するための,アンサンブルに基づく新しいソリューションを開発した。
我々は、MNIST、CIFAR-10、CIFAR-100といった標準画像分類データセットを用いて、最先端の敵攻撃に対する広範な実験を行った。
論文 参考訳(メタデータ) (2022-08-18T08:19:26Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。