Take Your Steps: Hierarchically Efficient Pulmonary Disease Screening via CT Volume Compression
- URL: http://arxiv.org/abs/2412.01525v2
- Date: Tue, 03 Dec 2024 07:43:55 GMT
- Title: Take Your Steps: Hierarchically Efficient Pulmonary Disease Screening via CT Volume Compression
- Authors: Qian Shao, Kai Zhang, Bang Du, Zepeng Li, Yixuan Wu, Qiyuan Chen, Jian Wu, Jintai Chen, Honghao Gao, Hongxia Xu,
- Abstract summary: We propose a hierarchical approach to reduce the computational cost of pulmonary disease screening.
First, we propose a Computed Tomography Volume Compression (CTVC) method to select a small slice that comprehensively represents the whole CT volume.
Second, the selected CT slices are used to detect pulmonary diseases subset via a lightweight classification model.
Third, an uncertainty measurement strategy is applied to identify samples with low diagnostic confidence, which are re-detected by radiologists.
- Score: 17.49451070903281
- License:
- Abstract: Deep learning models are widely used to process Computed Tomography (CT) data in the automated screening of pulmonary diseases, significantly reducing the workload of physicians. However, the three-dimensional nature of CT volumes involves an excessive number of voxels, which significantly increases the complexity of model processing. Previous screening approaches often overlook this issue, which undoubtedly reduces screening efficiency. Towards efficient and effective screening, we design a hierarchical approach to reduce the computational cost of pulmonary disease screening. The new approach re-organizes the screening workflows into three steps. First, we propose a Computed Tomography Volume Compression (CTVC) method to select a small slice subset that comprehensively represents the whole CT volume. Second, the selected CT slices are used to detect pulmonary diseases coarsely via a lightweight classification model. Third, an uncertainty measurement strategy is applied to identify samples with low diagnostic confidence, which are re-detected by radiologists. Experiments on two public pulmonary disease datasets demonstrate that our approach achieves comparable accuracy and recall while reducing the time by 50%-70% compared with the counterparts using full CT volumes. Besides, we also found that our approach outperforms previous cutting-edge CTVC methods in retaining important indications after compression.
Related papers
- MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [15.790010627377262]
Pulmonary nodules are critical indicators for the early diagnosis of lung cancer.
Traditional CT imaging methods suffered from cumbersome procedures, low detection rates, and poor localization accuracy.
This paper proposes MSDet, a multiscale attention and receptive field network for detecting tiny pulmonary nodules.
arXiv Detail & Related papers (2024-09-21T06:08:23Z) - Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate.
We developed a pipeline to detect bone lesions in CT volumes via a proxy segmentation task.
Our method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data.
arXiv Detail & Related papers (2024-01-31T21:05:34Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
Lung cancer is one of the deadliest diseases and the leading cause of illness and death.
The proposed method attains 18.32%, 27.20%, and 34.32% higher accuracy analyzed with existing method.
arXiv Detail & Related papers (2023-12-05T10:53:35Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - CT-SGAN: Computed Tomography Synthesis GAN [4.765541373485143]
We propose the CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes when trained on a small dataset of chest CT-scans.
We show that CT-SGAN can significantly improve lung detection accuracy by pre-training a nodule on a vast amount of synthetic data.
arXiv Detail & Related papers (2021-10-14T22:20:40Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.